Какое излучение относится неионизирующим излучениям. Естественные и искусственные источники неионизирующих электромагнитных излучений. Защита от неионизирующих электромагнитных излучений. Другие медико-биологические эффекты

К неионизирующим излучениям относят часть спектра электромагнитных колебаний и лазерные излучения. Возникновение данного фактора среды обитания человека связано с развитием радиоэлектроники, электроэнергетики, лазерной техники.

2.5.1. Электромагнитные излучения

Неионизирующими называют те электромагнитные колебания (ЭМК), энергия квантов которых недостаточна для ионизации молекул и атомов вещества. Значительную часть спектра неионизирующих излучений составляют излучения радиоволнового диапазона, меньшую часть - излучения оптического диапазона.

Электромагнитные излучения возникают при использовании электромагнитной энергии: радиосвязи, телевидения, радиолокации, радиолинейной, космической связи, радионавигации. Электромагнитная энергия нашла широкое применение в различных отраслях промышленности. В металлургии и машиностроении - для плавки, нагрева, сварки, напыления металлов; в текстильной и легкой промышленности - для сушки кожи, текстиля, бумаги, диэлектрической обработки материалов, нагрева, сварки и полимеризации пластмасс, в пищевой промышленности - для термообработки различных пищевых продуктов. Широко используется электромагнитная энергия в современной вычислительной технике, в медицине в лечебных и диагностических целях.

Основными параметрами электромагнитных колебаний являются длина волны l , частота f и скорость распространения волны V . В вакууме скорость распространения электромагнитных волн равна скорости света, а в средах она определяется

где e - диэлектрическая проницаемость среды; m - магнитная проницаемость среды.

Область распространения электромагнитных волн подразделяется на три зоны: ближнюю (зону индукции), промежуточную (зону интерференции) и дальнюю (волновую зону). Ближняя зона простирается на расстояние, равное примерно 1/6 длины волны (), где r - радиус сферы, центром которой является источник, l - длина волны. Дальняя зона начинается с расстояний, равных 6-7 длинам волн. Между этими двумя зонами располагается промежуточная зона.

Для оценки интенсивности электромагнитных полей в этих зонах используются различные параметры. В зоне индукции, где еще не сформировано электромагнитное поле и измеряемая электромагнитная энергия представляет собой определенный запас реактивной мощности, интенсивность излучений оценивается по электрической (Е ) и магнитной (Н ) составляющим. Единица измерения напряженности электрического поля – В/м, а магнитного поля – А/м.

Зона интерференции характеризуется наличием как поля индукции, так и поля распространяющейся электромагнитной волны. Энергетическим показателем этой зоны, как и ближней, является объемная плотность энергии, которая равна сумме плотностей электрического и магнитного полей.



Волновая зона характеризуется наличием сформированного электромагнитного поля, распространяющегося в виде бегущей волны. В этой зоне интенсивность поля оценивается величиной плотности потока энергии (ППЭ),т.е. количеством энергии, падающей на единицу поверхности. Плотность потока энергии в волновой зоне связана с напряженностью электрического и магнитного полей соотношением Р=Е Н. Единица измерения ППЭ - Вт/м 2 .

Действие электромагнитных излучений на организм человека. Биологический эффект электромагнитных излучений определяется:

Плотностью потока энергии;

Частотой излучения;

Продолжительностью облучения;

Режимом облучения (постоянный, прерывистый, импульсный);

Размером облучаемой поверхности;

Наличием других вредных и опасных факторов среды обитания;

Индивидуальными особенностями организма.

С точки зрения взаимодействия электромагнитных полей с биологическим объектом весь спектр частот электромагнитных излучений разбивается на 5 диапазонов. К первому диапазону отнесены электромагнитные колебания с частотой от единиц до нескольких тысяч герц, ко второму - от нескольких тысяч герц до 30 МГц, к третьему - от 30 МГц до 10 ГГц, к четвертому - от 10 ГГц до 200 ГГц, к пятому - от 200 ГГц до 3000 ГГц.

Для первого диапазона характерно то, что тело человека при вза-имодействии его с низкочастотным электромагнитным полем может рассматриваться как достаточно хороший проводник, поэтому глубина проникновения силовых линий поля оказывается незначительной. Внутри тела поле практически отсутствует.

Для второго диапазона частот характерен быстрый рост величины поглощения энергии с увеличением частоты. Увеличение поглощенной энергии приблизительно пропорционально квадрату частоты.

Особенностью третьего диапазона является то, что на определенных частотах имеет место ряд максимумов поглощения телом энергии внешнего поля. Наибольшее поглощение электромагнитной энергии человеком наблюдается на частоте, близкой к 70 МГц. На более высоких и более низких частотах величина поглощенной энергии значительно меньше. При этом на меньших частотах энергия распределяется равномерно, а на больших в различных структурах тела возникают области максимума (так называемых горячих пятен).

Для четвертого диапазона характерно быстрое затухание энергии электромагнитного поля при ее проникновении внутрь ткани. Практически вся энергия поглощается в поверхностных слоях биоструктур.

Электромагнитные колебания пятого диапазона поглощаются самыми поверхностными слоями кожи.

При постоянном воздействии электромагнитных полей низких частот появляются головные боли, вялость, сонливость, раздражительность, боли в области сердца, а также функциональные нарушения центральной нервной и сердечно-сосудистой систем.

Механизм биологического действия электромагнитных полей связан с их тепловым эффектом, который является следствием поглощения энергии электромагнитного поля. Тепловое воздействие особенно вредно для тканей со слаборазвитой сосудистой системой или недостаточным кровообращением (глаза, мозг, почки, желудок, желчный и мочевой пузыри).

Одним из специфических поражений, вызываемых воздействием электромагнитных излучений, является развитие катаракты, возникающее в результате нагрева хрусталика глаза до температур, превышающих допустимые физиологические пределы. Кроме катаракты, при воздействии электромагнитных излучений высоких частот (около 35 ГГц) могут возникать кератиты - воспаление роговицы глаз.

Воздействию электромагнитных излучений подвергаются в значительной мере операторы при работе на дисплеях. Установлено, что излучения? создаваемые выходным трансформатором строчной развертки, могут достигать 500 мВт/см, что соответствует 1300 в/м. На расстоянии 25 см от экрана электрическое поле на частоте выше 203 кГц достигает 80 В/м.

Гигиеническое нормирование электромагнитных излучений . Нормативными документами, регламентирующими воздействие электромагнитных излучений, являются:

ГОСТ 12.1.006-84 "Электромагнитные поля радиочастот. Допустимые уровни на рабочих местах и требования к проведению контроля";

Санитарные нормы и правила защиты населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты" N 2971-34;

Санитарные правила и нормы СанПиН 2.2.4/2 1.8.055-96 "Электромаг- нитные излучения радиочастотного диапазона (ЭМИ РЧ).

ГОСТ 12.1.006-84 устанавливает ПДУ электромагнитных излучений на рабочих местах с учетом диапазонов частот.

В диапазоне частот 60 кГц-300 МГц интенсивность электромагнитного поля характеризуется напряженностью электрического (Е ) и магнитного (Н ) полей.

Предельно допустимые значения Е и Н в этом диапазоне определяют по допустимой энергетической нагрузке и времени воздействия. Энергетическая нагрузка равна произведению квадрата напряженности поля на время его воздействия. Энергетическая нагрузка, создаваемая электрическим полем, равна ЭН Е = = Е 2 Т , (В/м 2), магнитным - ЭН н =Н 2. Т , (А/м 2) ч.

Расчет предельно допустимых значений Е и Н в диапазоне частот 60 кГц - 300 МГц производят по формулам

где Е пд и Н пд - предельно допустимые значения напряженности электрического, (В/м), и магнитного (А/м) полей; Т - время воздействия, ч; и - предельно допустимые значения энергетической нагрузки в течение рабочего дня, (В/м) 2 /ч и (А/м) 2 /ч.

Максимальные значения , , представлены в табл.2.4.

Таблица 2.4

Одновременное воздействие электрического и магнитного полей в диапазоне частот от 0,06 до 3 МГц считается допустимым при соблюдении следующего условия:

где ЭН Е и ЭН Н - энергетические нагрузки, характеризующие воздействие электрического и магнитного полей.

В диапазоне частот 300 МГц - 300 ГГц интенсивность электромагнитного поля характеризуется поверхностной плотностью потока энергии (ППЭ), энергетическая нагрузка при этом равна:

ЭН ППЭ = ППЭ. Т

Предельно допустимые значения ППЭ электромагнитных полей в диапазоне частот 300 МГц - 300 ГГц определяют по формуле:

где ППЭ ПД - предельно допустимое значение плотности потока энергии, Вт/м (мВт/см, мкВТ/см); - предельно-допустимая величина энергетической нагрузки, равная 2Вт ч/м (200 мкВт ч/м); К - коэффициент ослабления биологической эффективности, равный: I - для всех случаев облучения, исключая облучение от вращающихся и сканирующих антенн; 10 - для случаев облучения от вращающихся и сканирующих антенн; Т - время пребывания в зоне облучения за рабочую смену, ч.

Санитарные правила и нормы СанПиН 2.2.4/2.1.8.055-96 устанавливают ПДУ воздействия на людей электромагнитных излучений в диапазоне частот 30 кГц - 300 ГГц, требования к источникам ЭМИ РЧ, к размещению этих источников, меры защиты работающих от воздействия ЭМИ РЧ.

Согласно названным правилам и нормам оценка воздействия ЭМИ РЧ на людей осуществляется по следующим параметрам:

По энергетической экспозиции, определяемой интенсивностью ЭМИ РЧ и времени его воздействия на человека;

По значениям интенсивности ЭМИ РЧ.

Оценка по энергетической экспозиции (ЭЭ) применяется для лиц, работа или обучение которых связаны с необходимостью пребывания в зонах влияния источников ЭМИ РЧ при условии прохождения этими лицами медицинских осмотров в установленном порядке. Оценка же по значениям интенсивности ЭМИ РЧ применяется для лиц, работа или обучение которых не связаны с необходимостью пребывания в зонах влияния источников ЭМИ РЧ, для лиц, не достигших 18 лет, для беременных женщин, для лиц, находящихся на территории жилой застройки.

В диапазоне частот 30 кГц - 300 МГц интенсивность ЭМИ РЧ оценивается значениями напряженности электрического поля Е (В/м) и напряженности магнитного поля Н (А/м). В диапазоне частот 300 МГц - 300 ГГц интенсивность ЭМИ РЧ оценивается по плотности потока энергии ППЭ (Вт/м 2 ; мкВт/см 2).

Энергетическая экспозиция, создаваемая электрическим полем, равна ЭЭ Е = = Е 2 Т (В/м 2) ч, а создаваемая магнитным полем равна ЭЭ Н =Н 2 Т (А/м 2) ч.

Предельно допустимые значения интенсивности ЭМИ РЧ (Е ПДУ, Н ПДУ , ППЭ ПДУ ) в зависимости от времени воздействия в течение рабочего дня и допустимое время воздействия в зависимости от интенсивности ЭМИ РЧ определяются по формулам:

Нормативным документом, регламентирующим защиту населения от воздействия электромагнитных излучений, являются "Санитарные нормы и правила защиты населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты" № 2971-34. Этим документом установлены следующие значения предельно допустимого уровня напряженности электрического поля, кВ/м: внутри жилых зданий - 0,5; на территории жилой застройки - 1; в населенной местности, вне зоны жилой застройки - 10; в ненаселенной местности - 15; в труднодоступной местности - 20.

СанПин 2.2.2.542-96 регламентируют допустимые значения параметров неионизирующих электромагнитных излучений при работе с видеодисплейными терминалами (ВДТ), персональными электронно-вычислительными машинами (ПЭВМ), которые включают:

Напряженность электромагнитного поля по электрической составляющей на расстоянии 50 см от поверхности видеомонитора, В/м;

Напряженность электромагнитного поля по магнитной составляющей на расстоянии 50 см от поверхности видеомонитора, А/м;

Напряженность электростатического поля, кВ/м;

Поверхностный электростатический потенциал, В;

Плотность магнитного потока, нТл.

Кроме того, вышеупомянутым нормативным документом определены требования к микроклимату, содержанию аэроионов, вредных химических веществ в воздухе помещений, к шуму, вибрации, к организации режима труда и отдыха при работе с ВДТ и ПЭВМ.

Режим труда и отдыха установлен в зависимости от вида и категории трудовой деятельности. Виды трудовой деятельности разделены на три группы:

группа А - работа по считыванию информации с экрана ВДТ или ПЭВМ;

группа Б - работа по вводу информации;

группа В - творческая работа в режиме диалога с ЭВМ.

Категории работы с ВДТ и ПЭВМ (I,II,III) установлены для групп А и Б по суммарному числу считываемых или вводимых знаков за рабочую смену, для группы В - по суммарному времени непосредственной работы с ВДТ или ПЭВМ.

Регламентирование шума при работе с ВДТ и ПЭВМ предусмотрено в октавных полосах частот со среднегеометрическими значениями 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000.

Допустимые значения виброскорости и виброускорения в м/с, м/с 2 и дБ установлены для среднегеометрических частот полос 1,6; 2,0; 2,5; 3,15; 4,0; 5,0; 6,3; 8,0; 10,0; 12,5; 16,0; 20,0; 25,0; 31,5; 40,0; 50,0; 63,0; 80,0, а также в третьоктавных полосах частот.

Учтены в СанПин 2.2.2.542-96 также эргономические требования, такие как высота стола над полом, основные размеры стула для учащихся и студентов.

Защита от электромагнитных полей . Все защитные мероприятия могут быть разделены на три группы:

Организационные;

Инженерно- технические;

Лечебно-профилактические.

Организационные мероприятия предусматривают оптимальное взаимное расположение облучающих объектов и обслуживающего персонала, разработку режима труда и отдыха с целью снижения до минимума времени нахождения людей под облучением.

Основой инженерно-технических мероприятий является экранирование. Экраны могут быть выполнены плоскими и замкнутыми, в виде оболочек. Основной характеристикой экранов является эффективность экранирования, т.е. степень ослабления электромагнитного поля. Она зависит от магнитной проницаемости материала, толщины его, удельного сопротивления, а также частоты электромагнитного поля.

В качестве материала для экранов обычно используют металлы (сталь, медь, алюминий). Изготавливают экраны или сплошными или сетчатыми. Кроме металлов могут быть использованы резина, древесное волокно, поролон, радиозащитное стекло с окиснометаллической пленкой.

Лечебно-профилактические мероприятия включают:

Предварительные и периодические медосмотры;

Сокращенный рабочий день;

Дополнительные отпуска.

Защитная одежда изготавливается из металлизированной ткани в виде комбинезонов, халатов, передников, курток с капюшонами с вмонтированными в них защитными очками.

В качестве профилактических мер при работах с ВДТ и ПЭВМ должны предусматриваться:

Проведение упражнений для глаз каждые 20-25 минут работы;

Проведение сквозного проветривания помещений во время перерывов;

Проведение физкультурной паузы во время перерывов;

Подключение таймера к ВДТ и ПЭВМ или централизованное отключение свечения информации на экранах видеомониторов с целью обеспечения нормируемого времени работы.

2.5.2. Лазерные излучения

Лазер - аббревиатура, состоящая из начальных букв английской фразы: Light Amplification by stimulated Emission of Radiation, что в переводе означает усиление света за счет создания стимулированного излучения. Лазерами называют устройства, основанные на принципе вынужденного индуцированного излучения атомов и молекул. В основе работы лазера лежит усиление светового излучения за счет энергии, накопленной атомами и молекулами лазерной среды в процессе накачки. Накачкой называют создание избытка атомов, находящихся в возбужденном состоянии. Способы накачки могут быть различными: оптическими, электрическими, электронными, химическими.

Лазерные установки нашли широкое применение во всех отраслях промышленности: в машиностроении для резки, сварки и упрочения металлов, в приборостроении - для обработки твердых и сверхтвердых сплавов, в радиоэлектронике - для точечной сварки, для производства печатных схем, микросварки, в текстильной промышленности - для раскроя тканей, в часовой промышленности - для прошивки отверстий в камнях и т.д. Растет применение лазеров в медицине: в офтальмохирургии, нейрохирургии. Большие перспективы открывает использование лазеров в области связи, в качестве источников света, для контроля за химическими процессами.

Общая и гигиеническая характеристика лазеров. Основными параметрами, характеризующими лазерные излучения с гигиенической точки зрения, являются: длина волны - l , мкм; энергетическая освещенность – W u , Вт/см 2 ; длительность импульса - t н ,с; частота повторения импульсов – f u , Гц; длительность воздействия - t , с.

Согласно "ГОСТ 12.1.040-83 Лазерная безопасность. Общие положения" все лазеры по степени опасности генерируемого излучения подразделяют на 4 класса. Лазеры 1 класса - выходное излучение их не представляет опасности для глаз и кожи.

Лазеры 2 класса - выходное излучение опасно для глаз при облучении прямым или зеркально отраженным излучением.

Лазеры 3 класса - их выходное излучение представляет опасность при облучении глаз прямым, зеркально отраженным, а также диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности и при облучении кожи прямым и зеркально отраженным излучением.

Лазеры 4 класса - выходное излучение их представляет опасность при облучении кожи диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности.

Зеркально отраженным называют лазерное излучение, отраженное под углом, равным углу падения. Диффузно отраженное лазерное излучение - излучение, отраженное от поверхности, соизмеримой с длиной волны по всевозможным направлениям в пределах полусферы.

В зависимости от режима излучения различают два типа лазеров: непрерывного и импульсного действия.

По активному элементу, в котором энергия накачки преобразуется в излучение, различают лазеры газовые, жидкостные, полупроводниковые, твердотельные. По способу отвода тепла лазеры могут быть с естественным охлаждением и с принудительным воздушным или жидкостным.

При эксплуатации лазерных установок могут возникнуть следующие вредные и опасные факторы:

Лазерные излучения;

Повышенное значение напряжения в источниках электропитания лазеров;

Повышенная запыленность и загазованность воздуха рабочей зоны;

Повышенный уровень ультрафиолетовой радиации;

Повышенная яркость света;

Повышенный уровень шума и вибрации на рабочем месте;

Повышенный уровень электромагнитного излучения;

Повышенный уровень инфракрасной радиации;

Повышенная температура поверхности оборудования;

Взрывоопасность в системах накачки лазеров.

Действие лазерных излучений на организм человека. Биологическое действие лазерных излучений зависит от мощности излучения, длины волны, характера импульса, частоты следования, продолжительности облучения, величины облучаемой поверхности и от анатомических и функциональных особенностей облучаемых тканей.

Для непрерывного лазерного излучения характерен тепловой механизм действия, следствием которого является коагуляция (свертывание) белка, а при больших мощностях - испарение биоткани.

При действии импульсного лазерного излучения с длительностью импульсов менее 10 -2 с происходит преобразование энергии излучения в энергию механических колебаний, в частности, ударной волны.

Облучение брюшной стенки таким излучением может привести к повреж- дению печени, кишечника и других органов брюшной полости, а облучение головы - к внутриклеточным и внутримозговым кровоизлияниям.

Большую опасность представляют лазерные излучения для глаз и кожи. Наиболее уязвимым органом являются глаза. Хотя чувствительность тканей глаза мало отличается от чувствительности других тканей, но фокусирующая способность оптической системы глаза резко увеличивает плотность энергии лазерного излучения и поэтому глаза, особенно сетчатая оболочка, рассматриваются как критический орган по отношению к лазерным излучениям. Степень поглощения лазерной энергии зависит от пигментации глазного дна: большему воздействию подвержены голубые и зеленые глаза, меньшему - карие. Попадая в глаз, энергия лазера абсорбируется пигментным слоем и повышает температуру, вызывая ожог.

Лазерные излучения вызывают также повреждения кожи от покраснения до поверхностного обугливания. Степень воздействия при этом определяется как параметрами излучения лазера, так и пигментацией кожи, состоянием кровообращения. Пигментированная кожа поглощает значительно больше лазерных лучей, чем светлая кожа.

Кроме этого, под воздействием лазерных излучений возможны функ-циональные расстройства в деятельности центральной нервной системы, сердечно-сосудистой системы, снижение работоспособности, быстрая утомляемость, нарушение мозгового кровообращения.

Гигиеническое нормирование лазерных излучений. Предельно допустимые уровни (ПДУ) лазерного излучения устанавливаются в соответствии с требованиями "Санитарных норм и правил устройства и эксплуатации лазеров" № 2392-81. ПДУ лазерных излучений для конкретных условий воздействия рассчитываются с помощью соответствующих формул с учетом длины волны l , длительности воздействия t , энергетической экспозиции Н , диаметра зрачка глаза d 3 , фоновой освещенности роговицы, а также ряда поправочных коэффициентов на частоту повторения импульсов, длительность воздействия серии импульсов.

Рассчитанные для различных биологических эффектов величины ПДУ сравниваются между собой и в качестве определяющего принимается наимень- шее значение ПДУ.

При одновременном воздействии лазерных излучений различных параметров, но обладающих сходством биологического действия должно соблюдаться следующее условие:

где Н (1,2...) - энергетические экспозиции, создаваемые различными источниками лазерного излучения; Н ПДУ - ПДУ энергетической экспозиции для соответствующего источника излучения.

Защита от лазерных излучений. При разработке защитных мер руководствуются классом опасности лазеров. Все меры защиты могут быть разделены на организационные, технические и лечебно-профилактические.

Лазеры 3 и 4 классов опасности должны применяться только в установках закрытого типа, в которых зона взаимодействия лазерного излучения с мишенью и луч лазера на всем его протяжении изолированы от работающих. Помещения, где эксплуатируются лазерные установки, должны удовлетворять требованиям санитарных норм. Стены помещений должны иметь матовую поверхность, обеспечивающую максимальное рассеяние излучения. Для окраски стен рекомендуется использовать клеевые краски на основе мела.

В зависимости от длины волны излучения выбирают методы защиты:

Снижение времени контакта с излучением;

Увеличение расстояния до источника излучения;

Ослабление излучения с помощью светофильтров.

Марки стекол, используемые в средствах защиты от лазерного излучения, выбирают с учетом типа лазера и длины волны.

Санкт-Петербургский Государственный Университет
Факультет Прикладной Математики – Процессов Управления
Реферат по курсу
«Экология»
тема:
«Неионизирующее излучение»
Выполнил: студент 432 группы

Проверил: профессор

Санкт-Петербург
2014 год

Содержание.
Введение
Классификация
Действие на здоровье
История исследований
Биологическое действие электромагнитных полей
Параметры ЭМП, влияющие на биологическую реакцию
Последствия действия ЭМП для здоровья человека
Роль модуляции ЭМП в развитии биоэффекта
Комбинированное действие ЭМП и других факторов

Основные источники ЭМП
Бытовые электроприборы
Линии электропередачи
Персональный компьютер
Радары
Сотовая связь
Спутниковая связь

Организационные мероприятия по защите от ЭМП
Инженерно-технические мероприятия по защите населения от ЭМП
Лечебно-профилактические мероприятия
Заключение
Список литературы
Введение
В современном мире нас окружает огромное количество источников электромагнитных полей и излучений. Спектр электромагнитных колебаний по частоте достигает 1021 Гц. В зависимости от энергии фотонов (квантов) его подразделяют на область неионизирующих и ионизирующих излучений. В гигиенической практике к неионизирующим излучениям относят также электрические и магнитные поля. Излучение будет неионизирующим в том случае, если оно не способно разрывать химические связи молекул, то есть не способно образовывать положительно и отрицательно заряженные ионы. Т.к. излучение и его источник очень тесно связаны, то говоря о электромагнитных полях, мы будем подразумевать, где это уместно, действие неионизирующего излучение.
Для начала определимся, что такое электромагнитное поле.
На практике при характеристике электромагнитной обстановки используют термины "электрическое поле", "магнитное поле", "электромагнитное поле". Коротко поясним, что это означает и какая связь существует между ними.
Электрическое поле создается зарядами. Например, во всем известных школьных опытах по электризации эбонита, присутствует как раз электрическое поле.
Магнитное поле создается при движении электрических зарядов по проводнику.
Для характеристики величины электрического поля используется понятие напряженность электрического поля, обозначение Е, единица измерения В/м (Вольт-на-метр). Величина магнитного поля характеризуется напряженностью магнитного поля Н, единица А/м (Ампер-на-метр). При измерении сверхнизких и крайне низких частот часто также используется понятие магнитная индукция В, единица Тл(Тесла), одна миллионная часть Тл соответствует 1,25 А/м.
электромагнитное поле - это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами. Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле Е порождает магнитное поле Н, а изменяющееся Н - вихревое электрическое поле: обе компоненты Е и Н, непрерывно изменяясь, возбуждают друг друга. ЭМП неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами. При ускоренном движении заряженных частиц, ЭМП "отрывается" них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника (например, радиоволны не исчезают и при отсутствии тока в излучившей их антенне).
Электромагнитные волны характеризуются длиной волны, обозначение - λ (лямбда). Источник, генерирующий излучение, а по сути создающий электромагнитные колебания, характеризуются понятием частота, обозначение - f. Международная классификация электромагнитных волн по частотам приведена в таблице.
Международная классификация электромагнитных волн по частотам
Наименование частотного диапазона Границы диапазона Наименование волнового диапазона Границы диапазона
Крайние низкие, КНЧ 3 - 30 Гц Декамегаметровые 100 - 10 Мм
Сверхнизкие, СНЧ 30 - 300 Гц Мегаметровые 10 - 1 Мм
Инфранизкие, ИНЧ 0,3 - 3 кГц Гектокилометровые 1000 - 100 км
Очень низкие, ОНЧ 3 - 30 кГц Мириаметровые 100 - 10 км
Низкие частоты, НЧ 30 - 300 кГц Километровые 10 - 1 км
Средние, СЧ 0,3 - 3 МГц Гектометровые 1 - 0,1 км
Высокие частоты, ВЧ 3 - 30 МГц Декаметровые 100 - 10 м
Очень высокие, ОВЧ 30 - 300 МГц Метровые 10 - 1 м
Ультравысокие,УВЧ 0,3 - 3 ГГц Дециметровые 1 - 0,1 м
Сверхвысокие, СВЧ 3 - 30 ГГц Сантиметровые 10 - 1 см
Крайне высокие, КВЧ 30 - 300 ГГц Миллиметровые 10 - 1 мм
Гипервысокие, ГВЧ 300 - 3000 ГГц Децимиллиметровые 1 - 0,1 мм
Важная особенность ЭМП - это деление его на так называемую "ближнюю" и "дальнюю" зоны.
В "ближней" зоне, или зоне индукции, на расстоянии от источника r < λ ЭМП можно считать квазистатическим. Здесь оно быстро убывает с расстоянием, обратно пропорционально квадрату r -2 или кубу r -3 расстояния. В "ближней" зоне излучения электромагнитная волне еще не сформирована. Для характеристики ЭМП измерения переменного электрического поля Е и переменного магнитного поля Н производятся раздельно. Поле в зоне индукции служит для формирования бегущих составляющей полей (электромагнитной волны), ответственных за излучение.
"Дальняя" зона - это зона сформировавшейся электромагнитной волны, начинается с расстояния r > 3 λ . В "дальней" зоне интенсивность поля убывает обратно пропорционально расстоянию до источника r -1.
В "дальней" зоне излучения устанавливается связь между Е и Н:
Е = 377Н,
где 377 - волновое сопротивление вакуума, Ом.
Поэтому измеряется, как правило, только Е. В российской практике санитарно-гигиенического надзора на частотах выше 300 МГц в "дальней" зоне излучения обычно измеряется плотность потока электромагнитной энергии (ППЭ), или вектор Пойтинга. За рубежом ППЭ обычно измеряется для частот выше 1 ГГц. Обозначается как S, единица измерения Вт/м2. ППЭ характеризует количество энергии, переносимой электромагнитной волной в единицу времени через единицу поверхности, перпендикулярной направлению распространения волны.
Введенные в настоящем разделе элементарные понятия о природе ЭМП, его составляющих и единицах измерения достаточны для восприятия излагаемого далее материала читателем, не являющимся специалистом по электромагнитным полям.
Классификация
Итак, к неионизирующим излучениям относятся:
электромагнитные излучения (ЭМИ) диапазона радиочастот,
постоянные и переменные магнитные поля (ПМП и ПеМП),
электромагнитные поля промышленной частоты (ЭМППЧ),
электростатические поля (ЭСП),
лазерное излучение (ЛИ).
Нередко действию неионизирующего излучения сопутствуют другие производственные факторы, способствующие развитию заболевания (шум, высокая температура, химические вещества, эмоционально-психическое напряжение, световые вспышки, напряжение зрения).
Т.к. основным носителем неионизирующего излучения является ЭМИ, большая часть реферата посвящена именно этому виду излучения.

Действие на здоровье
История исследований
В СССР широкие исследования электромагнитных полей были начаты в 60-е годы. Был накоплен большой клинический материал о неблагоприятном действии магнитных и электромагнитных полей, было предложено ввести новое нозологическое заболевание “Радиоволновая болезнь” или “Хроническое поражение микроволнами”. В дальнейшем, работами ученых в России было установлено, что, во-первых, нервная система человека, особенно высшая нервная деятельность, чувствительна к ЭМП, и, во-вторых, что ЭМП обладает т.н. информационным действием при воздействии на человека в интенсивностях ниже пороговой величины теплового эффекта. Результаты этих работ были использованы при разработке нормативных документов в России. В результате нормативы в России были установлены очень жесткими и отличались от американских и европейских в несколько тысяч раз (например, в России ПДУ для профессионалов 0,01 мВт/см2; в США - 10 мВт/см2).
В последующем из ученых СССР и Америки была сформирована Советско-Американская группа, которая действовала с 1975 по 1985 гг. Эта группа организовала совместные биологические исследования, которые подтвердили правильность концепции советских ученых и как результат - нормативы в США были снижены.
В конце семидесятых и восьмидесятых годах в целях усовершенствования гигиенического нормирования в России был проведен комплекс экспериментальных исследований по влиянию ЭМП в широком частотном диапазоне на различные системы организма. Исследовались условия, модифицирующие биоэффекты ЭМП, накапливались данные для обоснования нормативных уровней ЭМП в различном диапазоне частот, по механизму биологического действия ЭМП.
В настоящее время исследования биологического действия ЭМП продолжаются.
Биологическое действие электромагнитных полей
Экспериментальные данные как отечественных, так и зарубежных исследователей свидетельствуют о высокой биологической активности ЭМП во всех частотных диапазонах. При относительно высоких уровнях облучающего ЭМП современная теория признает тепловой механизм воздействия. При относительно низком уровне ЭМП (к примеру, для радиочастот выше 300 МГц это менее 1 мВт/см2) принято говорить о нетепловом или информационном характере воздействия на организм. Механизмы действия ЭМП в этом случае еще мало изучены.
Параметры ЭМП, влияющие на биологическую реакцию
Варианты воздействия ЭМП на биоэкосистемы, включая человека, разнообразны: непрерывное и прерывистое, общее и местное, комбинированное от нескольких источников и сочетанное с другими неблагоприятными факторами среды и т.д.
На биологическую реакцию влияют следующие параметры ЭМП:
интенсивность ЭМП (величина);
частота излучения;
продолжительность облучения;
модуляция сигнала;
сочетание частот ЭМП,
периодичность действия.
Сочетание вышеперечисленных параметров может давать существенно различающиеся последствия для реакции облучаемого биологического объекта.
Последствия действия ЭМП для здоровья человека
В подавляющем большинстве случаев облучение происходит полями относительно низких уровней, ниже перечисленные последствия относятся к таким случаям.
Многочисленные исследования в области биологического действия ЭМП позволят определить наиболее чувствительные системы организма человека: нервная, иммунная, эндокринная и половая. Эти системы организма являются критическими. Реакции этих систем должны обязательно учитываться при оценке риска воздействия ЭМП на население.
Биологический эффект ЭМП в условиях длительного многолетнего воздействия накапливается, в результате возможно развитие отдаленных последствий, включая дегенеративные процессы центральной нервной системы, рак крови (лейкозы), опухоли мозга, гормональные заболевания.
Особо опасны ЭМП могут быть для детей, беременных (эмбрион), людей с заболеваниями центральной нервной, гормональной, сердечно-сосудистой системы, аллергиков, людей с ослабленным иммунитетом.
Влияние на нервную систему.
Большое число исследований, выполненных в России, и сделанные монографические обобщения, дают основание отнести нервную систему к одной из наиболее чувствительных систем в организме человека к воздействию ЭМП. На уровне нервной клетки, структурных образований по передачи нервных импульсов (синапсе), на уровне изолированных нервных структур возникают существенные отклонения при воздействии ЭМП малой интенсивности. Изменяется высшая нервная деятельность, память у людей, имеющих контакт с ЭМП. Эти лица могут иметь склонность к развитию стрессорных реакций. Определенные структуры головного мозга имеют повышенную чувствительность к ЭМП. Изменения проницаемости гемато-энцефалического барьера может привести к неожиданным неблагоприятным эффектам. Особую высокую чувствительность к ЭМП проявляет нервная система эмбриона.
Влияние на иммунную систему
В настоящее время накоплено достаточно данных, указывающих на отрицательное влияние ЭМП на иммунологическую реактивность организма. Результаты исследований ученых России дают основание считать, что при воздействии ЭМП нарушаются процессы иммуногенеза, чаще в сторону их угнетения. Установлено также, что у животных, облученных ЭМП, изменяется характер инфекционного процесса - течение инфекционного процесса отягощается. Возникновение аутоиммунитета связывают не столько с изменением антигенной структуры тканей, сколько с патологией иммунной системы, в результате чего она реагирует против нормальных тканевых антигенов. В соответствии с этой концепцией, основу всех аутоиммунных состояний составляет в первую очередь иммунодефицит по тимус-зависимой клеточной популяции лимфоцитов. Влияние ЭМП высоких интенсивностей на иммунную систему организма проявляется в угнетающем эффекте на Т-систему клеточного иммунитета. ЭМП могут способствовать неспецифическому угнетению иммуногенеза, усилению образования антител к тканям плода и стимуляции аутоиммунной реакции в организме беременной самки.
Влияние на эндокринную систему и нейрогуморальную реакцию.
В работах ученых России еще в 60-е годы в трактовке механизма функциональных нарушений при воздействии ЭМП ведущее место отводилось изменениям в гипофиз-надпочечниковой системе. Исследования показали, что при действии ЭМП, как правило, происходила стимуляция гипофизарно-адреналиновой системы, что сопровождалось увеличением содержания адреналина в крови, активацией процессов свертывания крови. Было признано, что одной из систем, рано и закономерно вовлекающей в ответную реакцию организма на воздействие различных факторов внешней среды, является система гипоталамус-гипофиз-кора надпочечников. Результаты исследований подтвердили это положение.
Влияние на половую функцию.
Нарушения половой функции обычно связаны с изменением ее регуляции со стороны нервной и нейроэндокринной систем. С этим связанаы результаты работы по изучению состояния гонадотропной активности гипофиза при воздействии ЭМП. Многократное облучение ЭМП вызывает понижение активности гипофиза
Любой фактор окружающей среды, воздействующий на женский организм во время беременности и оказывающий влияние на эмбриональное развитие, считается тератогенным. Многие ученые относят ЭМП к этой группе факторов.
Первостепенное значение в исследованиях тератогенеза имеет стадия беременности, во время которой воздействует ЭМП. Принято считать, что ЭМП могут, например, вызывать уродства, воздействуя в различные стадии беременности. Хотя периоды максимальной чувствительности к ЭМП имеются. Наиболее уязвимыми периодами являются обычно ранние стадии развития зародыша, соответствующие периодам имплантации и раннего органогенеза.
Было высказано мнение о возможности специфического действия ЭМП на половую функцию женщин, на эмбрион. Отмечена более высокая чувствительность к воздействию ЭМП яичников нежели семенников.
Установлено, что чувствительность эмбриона к ЭМП значительно выше, чем чувствительность материнского организма, а внутриутробное повреждение плода ЭМП может произойти на любом этапе его развития. Результаты проведенных эпидемиологических исследований позволят сделать вывод, что наличие контакта женщин с электромагнитным излучением может привести к преждевременным родам, повлиять на развитие плода и, наконец, увеличить риск развития врожденных уродств.
Другие медико-биологические эффекты.
С начала 60-х годов в СССР были проведены широкие исследования по изучению здоровья людей, имеющих контакт с ЭМП на производстве. Результаты клинических исследований показали, что длительный контакт с ЭМП в СВЧ диапазоне может привести к развитию заболеваний, клиническую картину которого определяют, прежде всего, изменения функционального состояния нервной и сердечно-сосудистой систем. Было предложено выделить самостоятельное заболевание - радиоволновая болезнь. Это заболевание, по мнению авторов, может иметь три синдрома по мере усиления тяжести заболевания:
астенический синдром;
астено-вегетативный синдром;
гипоталамический синдром.
Наиболее ранними клиническими проявлениями последствий воздействия ЭМ-излучения на человека являются функциональные нарушения со стороны нервной системы, проявляющиеся прежде всего в виде вегетативных дисфункций неврастенического и астенического синдрома. Лица, длительное время находившиеся в зоне ЭМ-излучения, предъявляют жалобы на слабость, раздражительность, быструю утомляемость, ослабление памяти, нарушение сна. Нередко к этим симптомам присоединяются расстройства вегетативных функций. Нарушения со стороны сердечно-сосудистой системы проявляются, как правило, нейроциркуляторной дистонией: лабильность пульса и артериального давления, наклонность к гипотонии, боли в области сердца и др. Отмечаются также фазовые изменения состава периферической крови (лабильность показателей) с последующим развитием умеренной лейкопении, нейропении, эритроцитопении. Изменения костного мозга носят характер реактивного компенсаторного напряжения регенерации. Обычно эти изменения возникают у лиц по роду своей работы постоянно находившихся под действием ЭМ-излучения с достаточно большой интенсивностью. Работающие с МП и ЭМП, а также население, живущее в зоне действия ЭМП, жалуются на раздражительность, нетерпеливость. Через 1-3 года у некоторых появляется чувство внутренней напряженности, суетливость. Нарушаются внимание и память. Возникают жалобы на малую эффективность сна и на утомляемость.
Учитывая важную роль коры больших полушарий и гипоталамуса в осуществлении психических функций человека, можно ожидать, что длительное повторное воздействие предельно допустимых ЭМ-излучения (особенно в дециметровом диапазоне волн) может повести к психическим расстройствам.
Роль модуляции ЭМП в развитии биоэффекта
В последние годы появились публикации, в которых имеются весьма важные указания о наличии т.н. резонансных эффектов при воздействии на биобъекты ЭМП, о роли в биоэффектах некоторых форм модуляции. Показано наличие т.н. частотных и амплитудных окон, обладающих высокой биологической активностью на клеточном уровне, а также при воздействии ЭМП на центральную нервную и иммунную системы. Во многих работах указываются на "информационный" механизм биологического действия ЭМП. Опубликованы данные о неадекватных патологических реакциях людей на модулированные электромагнитные поля.
Однако, действующие гигиенические нормативы, основанные лишь на регламентации энергетической нагрузки, слагаемой из интенсивности и времени контакта с ЭМП, не позволяют распространить ПДУ на условия воздействия ЭМП со сложными физическими характеристиками, в частности применительно к конкретным режимам модуляции.
Комбинированное действие ЭМП и других факторов
Имеющиеся результаты свидетельствуют о возможной модификации биоэффектов ЭМП как тепловой, так и нетепловой интенсивности под влиянием ряда факторов как физической, так и химической природы. Условия комбинированного действия ЭМП и других факторов позволили выявить значительное влияние ЭМП сверхмалых интенсивностей на реакцию организма, а при некоторых сочетаниях может развиться ярко выраженная патологическая реакция.
Заболевания, вызываемые воздействием неионизирующих излучений
Острое воздействие встречается в исключительно редких случаях грубого нарушения техники безопасности улиц, обслуживающих мощные генераторы или лазерные установки. Интенсивное ЭМИ вызывает раньше всего тепловой эффект. Больные жалуются на недомогание, боль в конечностях, мышечную слабость, повышение температуры тела, головную боль, покраснение лица, потливость, жажду, нарушение сердечной деятельности. Могут наблюдаться диэнцефальные расстройства в виде приступов тахикардии, дрожи, приступообразной головной боли, рвоты.
При остром воздействии лазерного излучения степень поражения глаз и кожи (критических органов) зависит от интенсивности и спектра излучения. Лазерный луч может вызвать помутнение роговой оболочки, ожог радужки, хрусталика с последующим развитием катаракты. Ожог сетчатки ведет к образованию рубца, что сопровождается снижением остроты зрения. Перечисленные поражения глаз лазерным излучением не имеют специфических черт.
Поражения кожи лазерным пучком зависят от параметров излучения и носят самый разнообразный характер; от функциональных сдвигов в активности внутрикожных ферментов или легкой эритемы в месте облучения до ожогов, напоминающих электрокоагуляционные ожоги при поражении электротоком, или разрыва кожных покровов.
В условиях современного производства профессиональные заболевания, вызываемые воздействием неионизирующих излучений, относятся к хроническим.
Ведущее место в клинической картине заболевания занимают функциональные изменения центральной нервный системы, особенно ее вегетативных отделов, и сердечно-сосудистой системы. Выделяют три основных синдрома: астенический, астеновегетативный (или синдром нейроциркуляторной дистонии гипертонического типа) и гипоталамический.
Больные жалуются на головную боль, повышенную утомляемость, общую слабость, раздражительность, вспыльчивость, снижение работоспособности, нарушение сна, боль в области сердца. Характерны артериальная гипотензия и брадикардия. В более выраженных случаях присоединяются вегетативные нарушения, связанные с повышенной возбудимостью симпатического отдела вегетативной нервной системы и проявляющиеся сосудистой неустойчивостью с гипертензивными ангиоспастическими реакциями (неустойчивость артериального давления, лабильность пульса, бради- и тахикардия, общий и локальный гипергидроэ). Возможно формирование различных фобий, ипохондрических реакций. В отдельных случаях развивается гипоталамический (диэнцефальный) синдром, характеризующийся так называемыми симпатико-адреналовыми кризами.
Клинически обнаруживается повышение сухожильных и периостальных рефлексов, тремор пальцев, положительный симптом Ромберга, угнетение или усиление дермографизма, дистальная гипестезия, акроцианоз, снижение кожной температуры. При действии ПМП может развиться полиневрит, при воздействии электромагнитных полей СВЧ - катаракта.
Изменения в периферической крови неспецифичны. Отмечается наклонность к цитопении, иногда умеренный лейкоцитоз, лимфоцитоз, уменьшенная СОЭ. Может наблюдаться повышение содержания гемоглобина, эритроцитоз, ретикулоцитоз, лейкоцитоз (ЭППЧ и ЭСП); снижение гемоглобина (при лазерном излучении).
Диагностика поражений от хронического воздействия неионизирующего излучения затруднена. Она должна базироваться на подробном изучении условий труда, анализе динамики процесса, всестороннем обследовании больного.
Изменения кожи, вызванные хроническим воздействием неионизирующего излучения:
Актинический (фотохимический) кератоз
Актинический ретикулоид
Кожа ромбическая на затылке (шее)
Пойкилодермия Сиватта
Старческая атрофия (вялость) кожи
Актиническая [фотохимическая] гранулема
Другие изменения кожи, вызванные хроническим воздействием неионизирующего излучения
Изменение кожи, вызванное хроническим воздействием неионизирующего излучения, неуточненное
Но прогноз благоприятный. При снижении трудоспособности и рациональном трудоустройстве, возможно направление на ВТЭК. Необходимо совершенствовать технологии, соблюдать санитарные правила и технику безопасности.
Основные источники ЭМП
Бытовые электроприборы
Все бытовые приборы, работающие с использованием электрического тока, являются источниками электромагнитных полей.
Наиболее мощными следует признать СВЧ-печи, аэрогрили, холодильники с системой “без инея”, кухонные вытяжки, электроплиты, телевизоры. Реально создаваемое ЭМП в зависимости от конкретной модели и режима работы может сильно различаться среди оборудования одного типа (смотри рисунок 1). Все ниже приведенные данные относятся к магнитному полю промышленной частоты 50 Гц.
Значения магнитного поля тесно связаны с мощностью прибора - чем она выше, тем выше магнитное поле при его работе. Значения электрического поля промышленной частоты практически всех электробытовых приборов не превышают нескольких десятков В/м на расстоянии 0,5 м, что значительно меньше ПДУ 500 В/м.

Рис.1. Средние уровни магнитного поля промышленной частоты бытовых электроприборов на расстоянии 0,3 м.
В таблице 1 представлены данные о расстоянии, на котором фиксируется магнитное поле промышленной частоты (50 Гц) величиной 0,2 мкТл при работе ряда бытовых приборов.
Таблица 1.
Распространение магнитного поля промышленной частоты от бытовых электрических приборов (выше уровня 0,2 мкТл)
Источник Расстояние, на котором фиксируется величина больше 0,2 мкТл
Холодильник, оснащенный системой "No frost" (во время работы компрессора) 1,2 м от дверцы; 1,4 м от задней стенки
Холодильник обычный (во время работы компрессора) 0,1 м от мотора
Утюг (режим нагрева) 0,25 м от ручки
Телевизор 14" 1,1 м от экрана; 1,2 м от боковой стенки.
Электрорадиатор 0,3 м
Торшер с двумя лампами по 75 Вт 0,03 м (от провода)
Электродуховка 0,4 м от передней стенки
Аэрогриль 1,4 м от боковой стенки

Рис.2. Изменение уровня магнитного поля промышленной частоты бытовых электроприборов в зависимости расстояния
Санитарно–гигиеническое нормирование ЭМП бытовых приборов
Основным документом, устанавливающим требования к ПДУ ЭМП бытовых приборов являются "Межгосударственные санитарные нормы допустимых уровней физических факторов при применении товаров народного потребления в бытовых условиях", МСанПиН 001-96. Для отдельных видов товаров установлены свои нормы: "Предельно допустимые уровни плотности потока энергии, создаваемой микроволновыми печами" СН № 2666-83, "Предельно допустимые нормы напряженности электромагнитного поля, создаваемого индукционными бытовыми печами, работающими на частоте 20 - 22 кГц" СН № 2550-82. Значения ПДУ ЭМП для бытовой техники приведены в таблице 2.
Таблица 2
Предельно допустимые уровни электромагнитного поля для потребительской продукции, являющейся источником ЭМП
Источник Диапазон Значение ПДУ Примечание
Индукционные печи 20 - 22 кГц 500 В/м
4 А/м Условия измерения:
расстояние 0,3 м от корпуса
СВЧ печи 2,45 ГГц 10 мкВт/см2 Условия измерения:
расстояние 0,50 ± 0,05 м от любой точки, при нагрузке 1 литр воды
Видеодисплейный терминал ПЭВМ 5 Гц - 2 кГц Епду = 25 В/м
Впду = 250 нТл Условия измерения:
расстояние 0,5 м вокруг монитора ПЭВМ
2 - 400 кГц Епду = 2,5 В/м
Впду = 25 нТл
поверхностный электростатический потенциал V = 500 В Условия измерения:
расстояние 0,1 м от экрана монитора ПЭВМ
Прочая продукция 50 Гц Е = 500 В/м Условия измерения:
расстояние 0,5 м от корпуса изделия
0,3 - 300 кГц Е = 25 В/м
0,3 - 3 МГц Е = 15 В/м
3 - 30 МГц Е = 10 В/м
30 - 300 МГц Е = 3 В/м
0,3 - 30 ГГц ППЭ = 10 мкВт/см2
Возможные биологические эффекты
Человеческий организм всегда реагирует на электромагнитное поле. Однако, для того чтобы эта реакция переросла в паталогию и привела к заболеванию необходимо совпадение ряда условий – в том числе достаточно высокий уровень поля и продолжительность облучения. Поэтому, при использовании бытовой техники с малыми уровнями поля и/или кратковременно ЭМП бытовой техники не оказывает влияния на здоровье основной части населения. Потенциальная опасность может грозить лишь людям с повышенной чувствительностью к ЭМП и аллергикам, также зачастую обладающим повышенной чувствительностью к ЭМП.
Кроме того, согласно современным представлениям, магнитное поле промышленной частоты может быть опасным для здоровья человека, если происходит продолжительное облучение (регулярно, не менее 8 часов в сутки, в течение нескольких лет) с уровнем выше 0,2 микротесла.
Рекомендации
приобретая бытовую технику проверяйте в Гигиеническом заключении (сертификате) отметку о соответствии изделия требованиям "Межгосударственных санитарных норм допустимых уровней физических факторов при применении товаров народного потребления в бытовых условиях", МСанПиН 001-96;
используйте технику с меньшей потребляемой мощностью: магнитные поля промышленной частоты будут меньше при прочих равных условиях;
к потенциально неблагоприятным источникам магнитного поля промышленной частоты в квартире относятся холодильники с системой “без инея”, некоторые типы “теплых полов”, нагреватели, телевизоры, некоторые системы сигнализации, различного рода зарядные устройства, выпрямители и преобразователи тока – спальное место должно быть на расстоянии не менее 2-х метров от этих предметов если они работают во время Вашего ночного отдыха;
при размещении в квартире бытовой техники руководствуйтесь принципами, приведенными на рисунке 3.

Рис. 3а. Вариант неправильного размещения бытовых электроприборов в помещении квартиры

Рис. 3б. Вариант правильного размещения бытовых электроприборов в помещениях квартиры
Микроволновые печи
Часто задается вопрос относительно опасности – безопасности микроволновых печей, поэтому информацию о них приводим отдельно.
Микроволновая печь (или СВЧ-печь) в своей работе использует для разогрева пищи электромагнитное поле, называемое также микроволновым излучением или СВЧ-излучением. Рабочая частота СВЧ-излучения микроволновых печей составляет 2,45 ГГц. Именно этого излучения и боятся многие люди. Однако, современные микроволновые печи оборудованы достаточно совершенной защитой, которая не дает электромагнитному полю вырываться за пределы рабочего объема. Вместе с тем, нельзя говорить, что поле совершенно не проникает вне микроволновой печи. По разным причинам часть электромагнитного поля предназначенного для курицы проникает наружу, особенно интенсивно, как правило, в районе правого нижнего угла дверцы.
Для обеспечения безопасности при использовании печей в быту в России действуют санитарные нормы, ограничивающие предельную величину утечки СВЧ-излучения микроволновой печи. Называются они "Предельно допустимые уровни плотности потока энергии, создаваемой микроволновыми печами" и имеют обозначение СН № 2666-83. Согласно этим санитарным нормам, величина плотности потока энергии электромагнитного поля не должна превышать 10 мкВт/см2 на расстоянии 50 см от любой точки корпуса печи при нагреве 1 литра воды. На практике практически все новые современные микроволновые печи выдерживают это требование с большим запасом. Тем не менее, при покупке новой печи надо убедиться, что в сертификате соответствия зафиксировано соответствие вашей печи требованиям этих санитарных норм.
Надо помнить, что со временем степень защиты может снижаться, в основном из-за появления микрощелей в уплотнении дверцы. Это может происходить как из-за попадания грязи, так и из-за механических повреждений. Поэтому дверца и ее уплотнение требует аккуратности в обращении и тщательного ухода. Срок гарантированной стойкости защиты от утечек электромагнитного поля при нормальной эксплуатации - несколько лет. Через 5-6 лет эксплуатации целесообразно проверить качество защиты для чего пригласить специалиста из специально аккредитованной лаборатории по контролю электромагнитного поля.
Кроме СВЧ-излучения работу микроволновой печи сопровождает интенсивное магнитное поле, создаваемое током промышленной частоты 50 Гц, протекающим в системе электропитания печи. При этом микроволновая печь является одним из наиболее мощных источников магнитного поля в квартире. Для населения уровень магнитного поля промышленной частоты в нашей стране до сих пор не ограничен, несмотря на его существенное действие на организм человека при продолжительном облучении. В бытовых условиях однократное кратковременнное включение (на несколько минут) не окажет существенного влияния на здоровье человека. Однако, сейчас часто бытовая микроволновая печь используется для разогрева пищи в кафе и в сходных других производственных условиях. При этом работающий с ней человек попадает в ситуацию хронического облучения магнитным полем промышленной частоты. В таком случае на рабочем месте необходим обязательный контроль магнитного поля промышленной частоты и СВЧ-излучения.
Линии электропередачи и здоровье человека
Провода работающей линии электропередачи создают в прилегающем пространстве электрическое и магнитное поля промышленной частоты. Расстояние, на которое распространяются эти поля от проводов линии, достигает десятков метров.
Дальность распространение электрического поля зависит от класса напряжения ЛЭП (цифра, обозначающая класс напряжения стоит в названии ЛЭП - например ЛЭП 220 кВ), чем выше напряжение - тем больше зона повышенного уровня электрического поля, при этом размеры зоны не изменяются в течении времени работы ЛЭП.
Дальность распространения магнитного поля зависит от величины протекающего тока или от нагрузки линии. Поскольку нагрузка ЛЭП может неоднократно изменяться как в течении суток, так и с изменением сезонов года, размеры зоны повышенного уровня магнитного поля также меняются.
Электрические и магнитные поля являются очень сильными факторами влияния на состояние всех биологических объектов, попадающих в зону их воздействия.
Например, в районе действия электрического поля ЛЭП у насекомых проявляются изменения в поведении: так у пчел фиксируется повышенная агрессивность, беспокойство, снижение работоспособности и продуктивности, склонность к потере маток; у жуков, комаров, бабочек и других летающих насекомых наблюдается изменение поведенческих реакций, в том числе изменение направления движения в сторону с меньшим уровнем поля.
У растений распространены аномалии развития - часто меняются формы и размеры цветков, листьев, стеблей, появляются лишние лепестки.
Здоровый человек страдает от относительно длительного пребывания в поле ЛЭП. Кратковременное облучение (минуты) способно привести к негативной реакцией только у гиперчувствительных людей или у больных некоторыми видами аллергии. Например, хорошо известны работы английских ученых в начале 90-х годов, показавших, что у ряда аллергиков по действием поля ЛЭП развивается реакция по типу эпилептической.
При продолжительном пребывании (месяцы - годы) людей в электромагнитном поле ЛЭП, могут развиваться заболевания преимущественно сердечно-сосудистой и нервной систем организма человека. В последние годы в числе отдаленных последствий часто называются онкологические заболевания.
Исследования биологического действия ЭМП ПЧ, выполненные в СССР в 60-70-х годах, ориентировались в основном на действие электрической составляющей, поскольку экспериментальным путем значимого биологического действия магнитной составляющей при типичных уровнях не было обнаружено. В 70-х годах для населения по ЭП ПЧ были введены жесткие нормативы и по настоящее время являющиеся одними из самых жестких в мире. Они изложены в Санитарных нормах и правилах "Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты" № 2971-84. В соответствии с этими нормами проектируются и строятся все объекты электроснабжения.
Несмотря на то, что магнитное поле во всем мире сейчас считается наиболее опасным для здоровья, предельно допустимая величина магнитного поля для населения в России не нормируется. Причина - нет денег для исследований и разработки норм. Большая часть ЛЭП строилась без учета этой опасности.
На основании массовых эпидемиологических обследований населения, проживающего в условиях облучения магнитными полями ЛЭП как безопасный или "нормальный" уровень для условий продолжительного облучения, не приводящий к онкологическим заболеваниям, независимо друг от друга шведскими и американскими специалистами рекомендована величина плотности потока магнитной индукции 0,2 - 0,3 мкТл.
Основной принцип защиты здоровья населения от электромагнитного поля ЛЭП состоит в установлении санитарно-защитных зон для линий электропередачи и снижением напряженности электрического поля в жилых зданиях и в местах возможного продолжительного пребывания людей путем применения защитных экранов.
Границы санитарно-защитных зон для ЛЭП которых на действующих линиях определяются по критерию напряженности электрического поля - 1 кВ/м.
Границы санитарно-защитных зон для ЛЭП согласно СН № 2971-84
Напряжение ЛЭП 330 кВ 500 кВ 750 кВ 1150 кВ
Размер санитарно-защитной (охранной) зоны 20 м 30 м 40 м 55 м

Границы санитарно-защитных зон для ЛЭП в г. Москве
Напряжение ЛЭП <20 кВ 35 кВ 110 кВ 150 -220 кВ 330 - 500 кВ 750 кВ 1150 кВ
Размер санитарно-защитной зоны 10 м 15 м 20 м 25 м 30 м 40 м 55 м

К размещению ВЛ ультравысоких напряжений (750 и 1150 кВ) предъявляются дополнительные требования по условиям воздействия электрического поля на население. Так, ближайшее расстояние от оси проектируемых ВЛ 750 и 1150 кВ до границ населенных пунктов должно быть, как правило, не менее 250 и 300 м соответственно.
Допустимые уровни воздействия электрического поля ЛЭП на население
ПДУ, кВ/м Условия облучения
0,5 внутри жилых зданий
1,0 на территории зоны жилой застройки
5,0 в населенной местности вне зоны жилой застройки; (земли городов в пределах городской черты в границах их перспективного развития на 10 лет, пригородные и зеленые зоны, курорты, земли поселков городского типа в пределах поселковой черты и сельских населенных пунктов в пределах черты этих пунктов) а также на территории огородов и садов;
10,0 на участках пересечения воздушных линий электропередачи с автомобильными дорогами 1 – IV категорий;
15,0 в ненаселенной местности (незастроенные местности, хотя бы и часто посещаемые людьми, доступные для транспорта, и сельскохозяйственные угодья);
20,0 в труднодоступной местности (недоступной для транспорта и сельскохозяйственных машин) и на участках, специально выгороженных для исключения доступа населения.
В пределах санитарно-защитной зоны ВЛ запрещается:
размещать жилые и общественные здания и сооружения;
устраивать площадки для стоянки и остановки всех видов транспорта;
размещать предприятия по обслуживанию автомобилей и склады нефти и нефтепродуктов;
производить операции с горючим, выполнять ремонт машин и механизмов.
Территории санитарно-защитных зон разрешается использовать как сельскохозяйственные угодья, однако рекомендуется выращивать на них культуры, не требующие ручного труда.
В случае, если на каких-то участках напряженность электрического поля за пределами санитарно-защитной зоны окажется выше предельно допустимой 0,5 кВ/м внутри здания и выше 1 кВ/м на территории зоны жилой застройки (в местах возможного пребывания людей), должны быть приняты меры для снижения напряженности. Для этого на крыше здания с неметаллической кровлей размещается практически любая металлическая сетка, заземленная не менее чем в двух точках В зданиях с металлической крышей достаточно заземлить кровлю не менее чем в двух точках.
На приусадебных участках или других местах пребывания людей напряженность поля промышленной частоты может быть снижена путем установления защитных экранов, например это железобетонные, металлические заборы, тросовые экраны, деревья или кустарники высотой не менее 2 м.
Персональный компьютер и здоровье человека
Излучательные характеристики монитора
электромагнитное поле монитора в диапазоне частот 20 Гц- 1000 МГц
статический электрический заряд на экране монитора
ультрафиолетовое излучение в диапазоне 200- 400 нм
инфракрасное излучение в диапазоне 1050 нм- 1 мм
рентгеновское излучение > 1,2 кэВ
Компьютер как источник переменного электромагнитного поля
Электромагнитное поле, создаваемое персональным компьютером, имеет сложный спектральный состав в диапазоне частот от 0 Гц до 1000 МГц. Электромагнитное поле имеет электрическую (Е) и магнитную (Н) составляющие, причем взаимосвязь их достаточно сложна, поэтому оценка Е и Н производится раздельно. Пример спектральной характеристики ПК в диапазоне 10 Гц 400 кГц приведен на рисунке 4.

Рис.4. Спектральная характеристика излучения монитора в диапазоне 10 Гц–400 кГц
Наличие в помещении нескольких компьютеров со вспомогательной аппаратурой и системой электропитания создает сложную картину электромагнитного поля. Рисунок 5 иллюстрирует типичный пример распределение магнитного поля промышленной частоты в помещении компьютерного зала. Очевидно, что электромагнитная обстановка в помещениях с компьютерами крайне сложная, распределение полей неравномерное, а уровни достаточно высоки, чтобы говорить об опасности их биологического действия.

Рис. 5. Пример типичного распределения магнитного поля в диапазоне от 5 Гц до 2 кГц в помещении оснащенном компьютерами
Компьютер как источник электростатического поля
При работе монитора на экране кинескопа накапливается электростатический заряд, создающий электростатическое поле (ЭСтП). В разных исследованиях, при разных условиях измерения значения ЭСтП колебались от 8 до 75 кВ/м. При этом люди, работающие с монитором, приобретают электростатический потенциал. Разброс электростатических потенциалов пользователей колеблется в диапазоне от -3 до +5 кВ. Когда ЭСтП субъективно ощущается, потенциал пользователя служит решающим фактором при возникновении неприятных субъективных ощущений.
Заметный вклад в общее электростатическое поле вносят электризующиеся от трения поверхности клавиатуры и мыши. Эксперименты показывают, что даже после работы с клавиатурой, электростатическое поле быстро возрастает с 2 до 12 кВ/м. На отдельных рабочих местах в области рук регистрировались напряженности статических электрических полей более 20 кВ/м.
Влияние на здоровье пользователя электромагнитных полей компьютера
Впервые значительное комплексное исследование возможного неблагоприятного действия электромагнитных полей на здоровье пользователей было проведено в 1984 году в Канаде. Поводом для проведения работы послужили многочисленные жалобы сотрудниц бухгалтерии одного из госпиталей. Для выявления причинных факторов были измерены все виды излучений, был распространен вопросник, касающийся всех видов воздействия на здоровье. В отчете по итогам работы была установлена однозначная связь заболеваемости с одним из ведущих факторов внешнего воздействия - электромагнитным полем, генерируемым монитором компьютера.
По обобщенным данным, у работающих за монитором от 2 до 6 часов в сутки функциональные нарушения центральной нервной системы происходят в среднем в 4,6 раза чаще, чем в контрольных группах, болезни сердечно-сосудистой системы - в 2 раза чаще, болезни верхних дыхательных путей - в 1,9 раза чаще, болезни опорно-двигательного аппарата - в 3,1 раза чаще. С увеличением продолжительности работы на компьютере соотношения здоровых и больных среди пользователей резко возрастает.
По данным Бюро трудовой статистики США в период с 1982 по 1990 г. наблюдалось восьмикратное увеличение случаев расстройства здоровья (нетрудоспособности) пользователей. Также, установлено, что частое воздействие электромагнитного излучения мониторов приводит в аномальным исходам беременности.
Исследования функционального состояния пользователя компьютера, проведенные в 1996 году в Центром электромагнитной безопасности, показали, что даже при кратковременной работе (45 минут) в организме пользователя под влиянием электромагнитного излучения монитора происходят значительные изменения гормонального состояния и специфические изменения биотоков мозга. Особенно ярко и устойчиво эти эффекты проявляются у женщин. Замечено, что у групп лиц (в данном случае это составило 20%) отрицательная реакция функционального состояния организма не проявляется при работе с ПК менее 1 часа. Исходя из анализа полученных результатов сделан вывод о возможности формирования специальных критериев профессионального отбора для персонала, использующего компьютер в процессе работы.
По мнению ряда исследователей электростатическое поле ВДТ напряженностью 15 кВ/м при одночасовой экспозиции играющих на компьютере подростков усиливает возбудительные процессы в ЦНС и сдвигает вегетативный гомеостаз в сторону симпатического преобладания.
Исследования общих закономерностей реакции организма человека на воздействие ЭМП монитора проводятся в Украине. Результаты свидетельствуют, что среди прочих нарушений в функциональном состоянии организма, наиболее ярко выражены нарушения со стороны гормональной и иммунной систем. Отклонение в иммунном статусе, в равной степени как иммунодефицит, так и аутоиммунность, являются основополагающими в дискоординации процессов, которые поддерживают гомеостаз в организме в целом.
Обследование 1583 женщин, проведенное в Окленде (шт. Калифорния, США) Кайзеровским медицинским центром, показало, что для женщин, более 20 часов в неделю пользующихся компьютерными терминалами, риск выкидыша на ранних и поздних стадиях беременности на 80 % выше, чем для женщин, которые выполняют ту же работу без дисплейных терминалов. По данным ученых Швеции существует 90 % вероятности, что у пользователей ВДТ в 1,5 раза чаще случаются выкидыши и у них рождается детей с врожденными пороками в 2,5 раза больше, чем у женщин других профессий.
Нью-Йорский комитет по охране труда и профилактике профессиональных заболеваний считает, что беременные или имеющие намерения забеременеть женщины должны переводиться на работу не связанную с использованием видеотерминалов.
Конечно, перечислением этих фактов не ограничивается неблагоприятное влияние ЭМП на рабочем месте на здоровье пользователя. Для этой ситуации облучения возможно проявление всех других биологических эффектов электромагнитного поля.
ПДУ электромагнитного поля и поверхностного электростатического потенциала монитора компьютера
Вид поля Диапазон частот Единица измерения ПДУ
магнитное поле 5Гц- 2кГц нТл 250
магнитное поле 2- 400 кГц, нТл 25
электрическое поле 5Гц- 2кГц В/м 25
электрическое поле 2- 400 кГц В/м 2,5
эквивалентный (поверхностный) электростатический потенциал В 500
По мнению ряда специалистов, женщинам имеющим намерение забеременеть также целесообразно отказаться от работы с компьютером, поскольку эмбрион на ранних стадиях развития чрезвычайно чувствителен к электромагнитному полю.
Радары и здоровье человека
Радиолокационные станции оснащены, как правило, антеннами зеркального типа и имеют узконаправленную диаграмму излучения в виде луча, направленного вдоль оптической оси.
Радиолокационные системы работают на частотах от 500 МГц до 15 ГГц, однако отдельные системы могут работать на частотах до 100 ГГц. Создаваемый ими ЭМ-сигнал принципиально отличается от излучения иных источников. Связано это с тем, что периодическое перемещение антенны в пространстве приводит к пространственной прерывистости облучения. Временная прерывистость облучения обусловлена цикличностью работы радиолокатора на излучение. Время наработки в различных режимах работы радиотехнических средств может исчисляться от нескольких часов до суток. Так у метеорологических радиолокаторов с временной прерывистостью 30 мин  излучение, 30 мин пауза суммарная наработка не превышает 12 ч, в то время как радиолокационные станции аэропортов в большинстве случаев работают круглосуточно. Ширина диаграммы направленности в горизонтальной плоскости обычно составляет несколько градусов, а длительность облучения за период обзора составляет десятки миллисекунд.
Радары метрологические могут создавать на удалении 1 км ППЭ ~ 100 Вт/м2 за каждый цикл облучения. Радиолокационные станции аэропортов создают ППЭ ~ 0,5 Вт/м2 на расстоянии 60 м. Морское радиолокационное оборудование устанавливается на всех кораблях, обычно оно имеет мощность передатчика на порядок меньшую, чем у аэродромных радаров, поэтому в обычном режиме сканирование ППЭ, создаваемое на расстоянии нескольких метров, не превышает 10 Вт/м2. Сравнение уровней создаваемых радарами полей с другими источниками СВЧ-диапазона приведено на рисунке 6.
Возрастание мощности радиолокаторов различного назначения и использование остронаправленных антенн кругового обзора приводит к значительному увеличению интенсивности ЭМИ СВЧ-диапазона и создает на местности зоны большой протяженности с высокой плотностью потока энергии. Наиболее неблагоприятные условия отмечаются в жилых районах городов, в черте которых размещаются аэропорты: Иркутск, Сочи, Сыктывкар, Ростов-на-Дону и ряд других.

Рис.6. Уровни ЭМП радаров в сравнении с другими источниками СВЧ-диапазона
Сотовая связь и здоровье человека
Сотовая радиотелефония является сегодня одной из наиболее интенсивно развивающихся телекоммуникационных систем.
Основными элементами системы сотовой связи являются базовые станции (БС) и мобильные радиотелефоны (МРТ). Базовые станции поддерживают радиосвязь с мобильными радиотелефонами, вследствие чего БС и МРТ являются источниками электромагнитного излучения в УВЧ диапазоне.
Важной особенностью системы сотовой радиосвязи является весьма эффективное использование выделяемого для работы системы радиочастотного спектра (многократное использование одних и тех же частот, применение различных методов доступа), что делает возможным обеспечение телефонной связью значительного числа абонентов. В работе системы применяется принцип деления некоторой территории на зоны, или "соты", радиусом обычно 0,5–10 километров.
Базовые станции
Исследования электромагнитной обстановки на территории, прилегающей к БС, были проведены специалистами разных стран, в том числе Швеции, Венгрии и России. По результатам измерений, проведенных в Москве и Московской области, можно констатировать, что в 100% случаев электромагнитная обстановка в помещениях зданий, на которых установлены антенны БС, не отличалась от фоновой, характерной для данного района в данном диапазоне частот. На прилегающей территории в 91% случаев зафиксированные уровни электромагнитного поля были в 50 раз меньше ПДУ, установленного для БС. Максимальное значение при измерениях, меньшее ПДУ в 10 раз, было зафиксировано вблизи здания на котором установлено сразу три базовые станции разных стандартов.
Имеющиеся научные данные и существующая система санитарно–гигиенического контроля при введения в эксплуатацию базовых станций сотовой связи позволяют отнести базовые станции сотовой связи к наиболее экологически и санитарно–гигиенически безопасным системам связи.
Мобильные радиотелефоны
Мобильный радиотелефон (МРТ) представляет собой малогабаритный приемопередатчик. В зависимости от стандарта телефона, передача ведется в диапазоне частот 453 – 1785 МГц. Мощность излучения МРТ является величиной переменной, в значительной степени зависящей от состояния канала связи "мобильный радиотелефон – базовая станция", т. е. чем выше уровень сигнала БС в месте приема, тем меньше мощность излучения МРТ. Максимальная мощность находится в границах 0,125–1 Вт, однако в реальной обстановке она обычно не превышает 0,05 – 0,2 Вт.
Вопрос о воздействии излучения МРТ на организм пользователя до сих пор остается открытым. Многочисленные исследования, проведенные учеными разных стран, включая Россию, на биологических объектах (в том числе, на добровольцах), привели к неоднозначным, иногда противоречащим друг другу, результатам. Неоспоримым остается лишь тот факт, что организм человека "откликается" на наличие излучения сотового телефона. Поэтому владельцам МРТ рекомендуется соблюдать некоторые меры предосторожности:
не пользуйтесь сотовым телефоном без необходимости;
разговаривайте непрерывно не боле 3 – 4 минут;
не допускайте, чтобы МРТ пользовались дети;
при покупке выбирайте сотовый телефон с меньшей максимальной мощностью излучения;
в автомобиле используйте МРТ совместно с системой громкоговорящей связи "hands-free" с внешней антенной, которую лучше всего располагать в геометрическом центре крыши.
Для людей, окружающих человека, разговаривающего по мобильному радиотелефону, электромагнитное поле, создаваемое МРТ не представляет никакой опасности.
Спутниковая связь и здоровье человека
Системы спутниковой связи состоят из приемопередающей станции на Земле и спутника, находящегося на орбите. Диаграмма направленности антенны станций спутниковой связи имеет ярко выраженной узконаправленный основной луч – главный лепесток. Плотность потока энергии (ППЭ) в главном лепестке диаграммы направленности может достигать нескольких сотен Вт/м2 вблизи антенны, создавая также значительные уровни поля на большом удалении. Например, станция мощностью 225 кВт, работающая на частоте 2,38 ГГц, создает на расстоянии 100 км ППЭ равное 2,8 Вт/м2. Однако рассеяние энергии от основного луча очень небольшое и происходит больше всего в районе размещения антенны.
Типичный расчетный график распределения ППЭ на высоте 2 м от поверхности земли в районе размещения антенны спутниковой связи приведен на рисунке 7.

Рис.7. График распределения плотности потока электромагнитного поля на высоте 2 м от поверхности земли в районе установки антенны спутниковой связи
Высота расположения антенны на землей, м 4,8
Диаметр антенны, м 5,5
Мощность, излучаемая антенной, Вт 134
Угол наклона антенны относительно горизонта, градус 10
Высота линии расчета плотности потока энергии, м 2
Азимут линии расчета плотности потока энергии, градус 0
Существуют два основных возможных опасных случая облучения:
непосредственно в районе размещения антенны;
при приближении к оси главного луча на всем его протяжении.
Защита человека от биологического действия ЭМП
Организационные мероприятия по защите от ЭМП
К организационным мероприятиям по защите от действия ЭМП относятся: выбор режимов работы излучающего оборудования, обеспечивающего уровень излучения, не превышающий предельно допустимый, ограничение места и времени нахождения в зоне действия ЭМП (защита расстоянием и временем), обозначение и ограждение зон с повышенным уровнем ЭМП.
Защита временем применяется, когда нет возможности снизить интенсивность излучения в данной точке до предельно допустимого уровня. В действующих ПДУ предусмотрена зависимость между интенсивностью плотности потока энергии и временем облучения.
Защита расстоянием основывается на падении интенсивности излучения, которое обратно пропорционально квадрату расстояния и применяется, если невозможно ослабить ЭМП другими мерами, в том числе и защитой временем. Защита расстоянием положена в основу зон нормирования излучений для определения необходимого разрыва между источниками ЭМП и жилыми домами, служебными помещениями и т.п.
Для каждой установки, излучающей электромагнитную энергию, должны определяться санитарно-защитные зоны в которых интенсивность ЭМП превышает ПДУ. Границы зон определяются расчетно для каждого конкретного случая размещения излучающей установки при работе их на максимальную мощность излучения и контролируются с помощью приборов. В соответствии с ГОСТ 12.1.026-80 зоны излучения ограждаются либо устанавливаются предупреждающие знаки с надписями: «Не входить, опасно!».
Инженерно-технические мероприятия по защите населения от ЭМП
Инженерно-технические защитные мероприятия строятся на использовании явления экранирования электромагнитных полей непосредственно в местах пребывания человека либо на мероприятиях по ограничению эмиссионных параметров источника поля. Последнее, как правило, применяется на стадии разработки изделия, служащего источником ЭМП.
Одним из основных способов защиты от электромагнитных полей является их экранирования в местах пребывания человека. Обычно подразумевается два типа экранирования: экранирование источников ЭМП от людей и экранирование людей от источников ЭМП. Защитные свойства экранов основаны на эффекте ослабления напряженности и искажения электрического поля в пространстве вблизи заземленного металлического предмета.
От электрического поля промышленной частоты, создаваемого системами передачи электроэнергии, осуществляется путем установления санитарно-защитных зон для линий электропередачи и снижением напряженности поля в жилых зданиях и в местах возможного продолжительного пребывания людей путем применения защитных экранов. Защита от магнитного поля промышленной частоты практически возможна только на стадии разработки изделия или проектирования объекта, как правило снижение уровня поля достигается за счет векторной компенсации поскольку иные способы экранирования магнитного поля промышленной частоты чрезвычайно сложны и дороги.
Основные требования к обеспечению безопасности населения от электрического поля промышленной частоты, создаваемого системами передачи и распределения электроэнергии, изложены в Санитарных нормах и правилах "Защита населения от воздействия электрического поля, создаваемого воздушными линиями электропередачи переменного тока промышленной частоты"№ 2971-84. Подробно о требованиях к защите смотри в разделе "Источники ЭМП. ЛЭП"
При экранировании ЭМП в радиочастотных диапазонах используются разнообразные радиоотражающие и радиопоглощающие материалы.
К радиоотражающим материалам относятся различные металлы. Чаще всего используются железо, сталь, медь, латунь, алюминий. Эти материалы используются в виде листов, сетки, либо в виде решеток и металлических трубок. Экранирующие свойства листового металла выше, чем сетки, сетка же удобнее в конструктивном отношении, особенно при экранировании смотровых и вентиляционных отверстий, окон, дверей и т.д. Защитные свойства сетки зависят от величины ячейки и толщины проволоки: чем меньше величина ячеек, чем толще проволока, тем выше ее защитные свойства. Отрицательным свойством отражающих материалов является то, что они в некоторых случаях создают отраженные радиоволны, которые могут усилить облучение человека.
Более удобными материалами для экранировки являются радиопоглощающие материалы. Листы поглощающих материалов могут быть одно- или многослойными. Многослойные - обеспечивают поглощение радиоволн в более широком диапазоне. Для улучшения экранирующего действия у многих типов радиопоглощающих материалов с одной стороны впрессована металлическая сетка или латунная фольга. При создании экранов эта сторона обращена в сторону, противоположную источнику излучения.
Несмотря на то, что поглощающие материалы во многих отношениях более надежны, чем отражающие, применение их ограничивается высокой стоимостью и узостью спектра поглощения.
В некоторых случаях стены покрывают специальными красками. В качестве токопроводящих пигментов в этих красках применяют коллоидное серебро, медь, графит, алюминий, порошкообразное золото. Обычная масляная краска обладает довольно большой отражающей способностью (до 30%), гораздо лучше в этом отношении известковое покрытие.
Радиоизлучения могут проникать в помещения, где находятся люди через оконные и дверные проемы. Для экранирования смотровых окон, окон помещений, застекления потолочных фонарей, перегородок применяется металлизированное стекло, обладающее экранирующими свойствами. Такое свойство стеклу придает тонкая прозрачная пленка либо окислов металлов, чаще всего олова, либо металлов - медь, никель, серебро и их сочетания. Пленка обладает достаточной оптической прозрачность и химической стойкостью. Будучи нанесенной на одну сторону поверхности стекла она ослабляет интенсивность излучения в диапазоне 0,8 – 150 см на 30 дБ (в 1000 раз). При нанесении пленки на обе поверхности стекла ослабление достигает 40 дБ (в 10000 раз).
Для защиты населения от воздействия электромагнитных излучений в строительных конструкциях в качестве защитных экранов могут применяться металлическая сетка, металлический лист или любое другое проводящее покрытие, в том числе и специально разработанные строительные материалы. В ряде случаев достаточно использования заземленной металлической сетки, помещаемой под облицовочный или штукатурный слой..
В качестве экранов могут применяться также различные пленки и ткани с металлизированным покрытием.
Радиоэкранирующими свойствами обладают практически все строительные материалы. В качестве дополнительного организационно-технического мероприятия по защите населения при планировании строительства необходимо использовать свойство "радиотени" возникающего из-за рельефа местности и огибания радиоволнами местных предметов.
В последние годы в качестве радиоэкранирующих материалов получили металлизированные ткани на основе синтетических волокон. Их получают методом химической металлизации (из растворов) тканей различной структуры и плотности. Существующие методы получения позволяет регулировать количество наносимого металла в диапазоне от сотых долей до единиц мкм и изменять поверхностное удельное сопротивление тканей от десятков до долей Ом. Экранирующие текстильные материалы обладают малой толщиной, легкостью, гибкостью; они могут дублироваться другими материалами (тканями, кожей, пленками), хорошо совмещаются со смолами и латексами.
Лечебно-профилактические мероприятия
Санитарно-профилактическое обеспечение включают следующие мероприятия:
организация и проведение контроля выполнения гигиенических нормативов, режимов работы персонала, обслуживающего источники ЭМП;
выявление профессиональных заболеваний, обусловленных неблагоприятными факторами среды;
разработка мер по улучшению условий труда и быта персонала, по повышению устойчивости организма работающих к воздействиям неблагоприятных факторов среды.
Текущий гигиенический контроль проводится в зависимости от параметров и режима работы излучающей установки, но как правило не реже 1 раза в год. При этом определяются характеристики ЭМП в производственных помещениях, в помещениях жилых и общественных зданий и на открытой территории. Измерения интенсивности ЭМП также проводятся при внесении в условия и режимы работы источников ЭМП изменений, влияющих на уровни излучения (замена генераторных и излучающих элементов, изменение технологического процесса, изменение экранировки и средств защиты, увеличение мощности, изменение расположения излучающих элементов и т.д.).
В целях предупреждения, ранней диагностики и лечения нарушений в состоянии здоровья работники, связанные с воздействием ЭМП, должны проходить предварительные при поступлении на работу и периодические медицинские осмотры в порядке, установленном соответствующим приказом Министерства здравоохранения.
Все лица с начальными проявлениями клинических нарушений, обусловленных воздействием ЭМП (астенический астено-вегетативный, гипоталамический синдром), а также с общими заболеваниями, течение которых может усугубляться под влиянием неблагоприятных факторов производственной среды (органические заболевания центральной нервной системы, гипертоническая болезнь, болезни эндокринной системы, болезни крови и др.), должны браться под наблюдение с проведением соответствующих гигиенических и терапевтических мероприятий, направленных на оздоровление условий труда и восстановление состояния здоровья работающих.
Заключение
В настоящее время ведется активное изучение механизмов биологического действия физических факторов неионизирующего излучения: акустических волн и электромагнитных излучений на биологические системы разного уровня организации; ферментов, клеткок, переживающих срезов мозга лабораторных животных, поведенческих реакций животных и развитие реакций в цепях: первичные мишени - клетка - популяции клеток – ткани.
Во ВНИИСХРАЭ развиваются исследования по оценке экологических последствий воздействия на природные и аграрные ценозы техногенных стрессоров - СВЧ- и УФ-В-радиации, основными задачами которых являются:
изучение последствий истощения озонного слоя на компоненты агроценозов нечерноземной зоны России;
изучение механизмов действия УФ-В-радиации на растения;
исследование раздельного и комбинированного действия электромагнитного излучения различных диапазонов (СВЧ, гамма, УФ, ИК) на сельскохозяйственных животных и модельные объекты с целью разработки методов гигиенического и экологического нормирования электромагнитного загрязнения окружающей среды;
разработка экологически чистых технологий, основанных на применении физических факторов, для различных отраслей АПП (растениеводство, животноводство, пищевая и перерабатывающая промышленность с целью интенсификации сельскохозяйственного производства.
А в Институте теоретической и экспериментальной биофизики РАН в Пущино проведено исследование на тему «Фазовый переход в синаптических мембранах как высокочувствительная мишень теплового действия неионизирующих излучений».
При интерпретации результатов исследований биологического действия неионизирующих излучений (электромагнитных и ультразвуковых) центральными и до сих пор мало изученными вопросами остаются вопросы о молекулярном механизме, первичной мишени и порогах действия излучений. Недавно был предложен новый молекулярный механизм синаптической передачи, основанный на фазовом переходе липидной мембраны как движущей силы выброса нейромедиатора в синапсах центральной нервной системы. Одно из важнейших следствий состоит в том, что сравнительно небольшие изменения локальной температуры в нервной ткани (от десятых долей до нескольких градусов) способны приводить к заметному изменению скорости синаптической передачи вплоть до полного выключения синапса. Такие изменения температуры могут быть вызваны излучениями терапевтической интенсивности. Из этих предпосылок следует гипотеза о существовании общего механизма действия неионизирующих излучений - механизма, в основе которого лежит небольшой локальный разогрев участков нервной ткани.
Таким образом, столь сложный и малоизученный аспект, как неионизирующие излучения и их влияние на экологию еще предстоит изучать в дальнейшем.

Список литературы
1. Павлов А.Н. «Воздействие электромагнитных излучений на жизнедеятельность», Москва: ГЕЛИОС, 2003 год, 224 стр.
2. http://www.tesla.ru
3. http://www.pole.com.ru
4. http://www.ecopole.ru
5. http://www.botanist.ru/
6. http://www.fcgsen.ru/
7. http://www.gnpc.ru/
8. http://www.rus-lib.ru/

Неионизирующие электромагнитные поля и излучения. Электромагнитное взаимодействие характерно для заряженных частиц. Переносчиком энергии между такими частицами являются фотоны электромагнитного поля или излучения. Длина электромагнитной волны (м) в воздухе связана с ее частотой f (Гц) соотношением λf = с, где с скорость света.

Электромагнитные поля и излучения разделяют на неионизирующие, в том числе лазерное излучение, и ионизирующие. Неионизирующие электромагнитные поля (ЭМП) и излучения (ЭМИ) имеют спектр колебаний с частотой до 10 21 Гц.

Неионизирующие электромагнитные поля естественного происхождения являются постоянно действующим фактором. К ним относятся: атмосферное электричество, радиоизлучения Солнца и галактик, электрические и магнитные поля Земли.

В неионизирующие техногенные источники электрических и магнитных полей и излучений. Их классификация приведена в табл. 2.9.

Применение техногенных ЭМП и ЭМИ различных частот систематизировано в табл. 2.10.

Основными источниками электромагнитных полей радиочастот являются радиотехнические объекты (РТО), телевизионные и радиолокационные станции (РЛС), термические цехи и участки (в зонах, примыкающих к предприятиям). ЭМП промышленной частоты чаще всего связаны с высоковольтными линиями (ВЛ) электропередачи, источниками магнитных полей, применяемыми на промышленных предприятиях.

Таблица 2.9

Классификация неионизирующих техногенных излучений


Показатель

диапазон частот

длина волны

Статическое поле

Электрическое





Магнитное





Электромагнитное поле

Электромагнитное поле промышленной частоты

50 Гц



Электромагнитное излучение радиочастотного диапазона (ЭМИ РЧ)

От 10 кГц до 30 кГц

30 км

От 30 кГц до 3 МГц

100 м

От 3 МГц до 30 МГц

10 м

От 30 МГц до 50 МГц

6 м

От 50 МГц до 300 МГц

1 м

От 300 МГц до 300 ГГц

1 мм

Зоны с повышенными уровнями ЭМП, источниками которых могут быть РТО и РЛС, имеют размеры до 100–150 м. При этом внутри зданий, расположенных в этих зонах , плотность потока энергии, как правило, превышает допустимые значения.

Таблица 2.10

Применение электромагнитных полей и излучений


Частота ЭМП и ЭМИ

Технологический процесс, установка, отрасль

> 0 до 300 Гц

Электроприборы, в том числе бытового назначения, высоковольтные линии электропередачи, трансформаторные подстанции, радиосвязь, научные исследования, специальная связь

0,3–3 кГц

Радиосвязь электропередачи, индукционный нагрев металла, физиотерапия

3–30 кГц

Сверхдлинноволновая радиосвязь, индукционный нагрев металла (закалка, плавка пайка), физиотерапия, УЗ-установки

30–300 кГц

Радионавигация, связь с морскими и воздушными судами, длинноволновая радиосвязь, индукционный нагрев металлов, электрокоррозионная обработка, ВДТ, УЗ-установки

0,3–3 МГц

Радиосвязь и радиовещание, радионавигация, индукционный и диэлектрический нагрев материалов, медицина

3–30 МГц

Радиосвязь и радиовещание, диэлектрический нагрев, медицина, нагрев плазмы

30–300 МГц

Радиосвязь, телевидение, медицина (физиотерапия, онкология), диэлектрический нагрев материалов, нагрев плазмы

0,3–3 ГГц

Радиолокация, радионавигация, радиотелефонная связь, телевидение, микроволновые печи, физиотерапия, нагрев и диагностика плазмы

3–30 ГГц

Радиолокация и спутниковая связь, метеолокация, радиорелейная связь, нагрев и диагностика плазмы, радиоспектроскопия

30–300 ГГц

Радары, спутниковая связь, радиометеорология, медицина (физиотерапия, онкология)

Значительную опасность представляют магнитные поля, возникающие в зонах, прилегающих к электрифицированным железным дорогам. Магнитные поля высокой интенсивности обнаруживаются даже в зданиях, расположенных в непосредственной близости от этих зон.

В быту источниками ЭМП и излучений являются телевизоры, дисплеи, печи СВЧ и другие устройства. Электростатические поля в условиях пониженной влажности (менее 70%) создают паласы, накидки, занавески и т.д. Микроволновые печи в промышленном исполнении не представляют опасности, однако неисправность их защитных экранов может существенно повысить утечки электромагнитного излучения. Экраны телевизоров и дисплеев как источники электромагнитного излучения в быту не опасны даже при длительном воздействии на человека, если расстояния от экрана превышают 30 см.

Электростатическое поле (ЭСП) полностью характеризуется напряженностью электрического поля Е (В/м). Постоянное магнитное поле (ПМП) характеризуется напряженностью магнитного поля Н (А/м), при этом в воздухе 1 А/м – 1,25 мкТл, где Тл – тесла (единица напряженности магнитного поля).

Электромагнитное поле (ЭМП) характеризуется непрерывным распределением в пространстве, способностью распространяться со скоростью света, воздействовать на заря­женные частицы и токи. ЭМП является совокупностью двух взаимосвязанных переменных полей – электрического и магнитного, которые характеризуются соответствующими векторами напряженности Е (В/м) и Н (А/м).

В зависимости от взаимного расположения источника электромагнитного излучения и места пребывания человека необходимо различать ближнюю зону (зону индукции), промежуточную зону и дальнюю зону (волновую зону) или зону излучения. При излучении от источников (рис. 2.11) ближняя зона простирается на расстояние λ/2 π, т. е. приблизительно на 1/6 длины волны. Дальняя зона начинается с расстояний , равных λ*2π, т.е. с расстояний, равных приблизительно шести длинам волны. Между этими двумя зонами располагается промежуточная зона.

Рис. 2.11. Зоны, возникающие вокруг элементарного источника

В зоне индукции, в которой еще не сформировалась бегущая электромагнитная волна, электрическое и магнитное поля следует считать независимыми друг от друга, поэтому эту зону можно характеризовать электрической и магнитной составляющими электромагнитного поля. Соотношение между ними в этой зоне может быть самым различным . Для промежуточной зоны характерно наличие, как поля индукции, так и распространяющейся электромагнитной волны. Для волновой зоны (зоны излучения) характерно наличие сформированного ЭМП, распространяющегося в виде бегущей электромагнитной волны. В этой зоне электрическая и магнитная составляющие изменяются синфазно и между их средними значениями за период существует постоянное соотношение

где ρ в – волновое сопротивление, Ом; , ε – электрическая постоянная; μ – магнитная проницаемость среды.

Колебания векторов E и Н происходят во взаимно перпендикулярных плоскостях. В волновой зоне воздействие ЭМП определяется плотностью потока энергии, переносимой электромагнитной волной. При распространении электромагнитной волны в проводящей среде векторы Е и Н связаны соотношением

где ω – круговая частота электромагнитных колебаний, Гц; v – удельная электропроводность вещества экрана; z – глубина проникновения электромагнитного поля.

При распространении ЭМП в вакууме или в воздухе, где ρ в = 377 Ом, Е = 377Н. Электромагнитное поле несет энергию, определяемую плотностью потока энергии (1 = ЕН (Вт/м 2)), которая показывает, какое количество энергии протекает за 1 с сквозь площадку в 1 м 2 , расположенную перпендикулярно движению волны.

При излучении сферических волн плотность потока энергии в волновой зоне может быть выражена через мощ­ность Р ист, подводимую к излучателю:

где R – расстояние до источника излучения, м.

Воздействие электромагнитных полей на человека зависит от напряженностей электрического и магнитного полей, потока энергии, частоты колебаний, наличия сопутствую­щих факторов, режима облучения, размера облучаемой по­верхности тела и индивидуальных особенностей организма. Установлено также, что относительная биологическая ак­тивность импульсных излучений выше непрерывных. Опасность воздействия усугубляется тем, что оно не обнаруживается органами чувств человека.

Воздействие электростатического поля (ЭСП) на человека связано с протеканием через него слабого тока (несколько микроампер). При этом электротравм никогда не наблюдается. Однако вследствие рефлекторной реакции на электрический ток (резкое отстранение от заряженного тела) возможна механическая травма при ударе о рядом расположенные элементы конструкций, падение с высоты и т.д. Исследование биологических эффектов показало, что наиболее чувствительны к электростатическому полю ЦНС, сердечно-сосудистая система, анализаторы. Люди, работающие в зоне воздействия ЭСП, жалуются на раздражительность, головную боль, нарушения сна и др.

Воздействие магнитных полей (МП) может быть постоянным (от искусственных магнитных материалов) и импульсным. Степень воздействия МП на работающих зависит от его максимальной напряженности в пространстве магнитного устройства или в зоне влияния искусственного магнита. Доза, полученная человеком, зависит от расположения по отношению к МП и режима труда. При действии переменного магнитного поля наблюдаются характерные зрительные ощущения, которые исчезают в момент прекращения воздействия. При постоянной работе в условиях хронического воздействия МП , превышающих предельно допустимые уровни, наблюдаются нарушения функций ЦНС, сердечно-сосудистой и дыхательной систем, пищеварительного тракта, изменения в крови. Длительное действие приводит к расстройствам, которые субъективно выражаются жалобами на головную боль в височной и затылочной области, вялость, расстройство сна, снижение памяти, повышенную раздражительность, апатию, боли в области сердца.

При постоянном воздействии ЭМП промышленной частоты наблюдаются нарушения ритма и замедление частоты сердечных сокращений. У работающих в зоне ЭМП промышленной частоты могут наблюдаться функциональные нарушения ЦНС и сердечно-сосудистой системы, а также изменения в составе крови.

При воздействии ЭМП радиочастотного диапазона атомы и молекулы, из которых состоит тело человека , поляризуются. Полярные молекулы (например, воды) ориентируются по направлению распространения электромагнитного поля; в электролитах, которыми являются жидкие составляющие тканей, крови и т.п., после воздействия внешнего поля появляются ионные токи. Переменное электрическое поле вызывает нагрев тканей человека как за счет переменной поляризации диэлектрика (сухожилия, хрящи и т.д.), так и за счет появления токов проводимости. Тепловой эффект является следствием поглощения энергии электромагнитного поля. Чем больше напряженность поля и время воздействия, тем сильнее проявляются указанные эффекты. Избыточная теплота отводится до известного предела путем увеличения нагрузки на механизм терморегуляции. Однако, начиная с величины I = 10 мВт/см 2 , называемой тепловым порогом, организм не справляется с отводом образующейся теплоты , и температура тела повышается, что приносит вред здоровью.

Наиболее интенсивно электромагнитные поля воздействуют на органы с большим содержанием воды. При одинаковых значениях напряженности поля коэффициент погло­щения в тканях с высоким содержанием воды примерно в 60 раз выше, чем в тканях с ее низким содержанием . С уве­личением длины волны глубина проникновения электро­магнитных волн возрастает; различие диэлектрических свойств тканей приводит к неравномерности их нагрева, возникновению макро- и микротепловых эффектов со значительным перепадом температур.

Перегрев особенно вреден для тканей со слаборазвитой сосудистой системой или с недостаточным кровообращением (глаза, мозг, почки, желудок, желчный и мочевой пузырь). Облучение глаз может привести к помутнению хрусталика (катаракте), которое обнаруживается не сразу, а через несколько дней или недель после облучения. Развитие катаракты является одним из немногих специфических поражений, вызываемых электромагнитными излучениями радиочастот в диапазоне 300 МГц – 300 ГГц при плотности потока энергии свыше 10 мВт/см 2 . Помимо катаракты при воздействии ЭМП возможны ожоги роговицы.

Для длительного действия ЭМП различных диапазонов длин волн при умеренной интенсивности (выше ПДУ) характерным считают развитие функциональных расстройств в ЦНС с нерезко выраженными сдвигами эндокринно-обменных процессов и состава крови. В связи с этим могут появиться головные боли, повышение или понижение давления, снижение частоты пульса, изменение проводимости в сердечной мышце, нервно-психические расстройства, быстрое развитие утомления. Возможны трофические нарушения: выпадение волос, ломкость ногтей, снижение массы тела. Наблюдаются изменения возбудимости обонятельного, зрительного и вестибулярного анализаторов. На ранней стадии изменения носят обратимый характер, при продолжающемся воздействии ЭМП происходит стойкое снижение работоспособности. В пределах радиоволнового диапазона доказана наибольшая биологическая активность микроволнового (СВЧ) поля. Острые нарушения при воздействии ЭМИ (аварийные ситуации) сопровождаются сердечно-сосудистыми расстройствами с обмороками, резким учащением пульса и снижением артериального давления.

Кафедра «Гигиены общей с экологией»

На тему: «Производственная санитария. Обеспечение комфортных условий трудовой деятельности.»

Выполнила

Студентка 2-го курса

205-Л2 группы

Талаш Симона

Александровна

Производственная санитария. Обеспечение комфортных условий трудовой деятельности.

Введение

Производственная санитария - система гигиенических, санитарно-технических, организационных мероприятий и средств, предотвращающих воздействие на работающих вредных производственных факторов.

Основными источниками информации для написания дипломной работы послужили законодательные акты Российской Федерации, санитарные нормы, строительные нормы и правила, ГОСТы Российской Федерации, Руководство Р2.2.2006-05, методические пособия; материалы, полученные из книжных изданий, статьи из научных работ.

Дипломная работа содержит две главы. В первой главе рассматривается процесс аттестации рабочих мест по условиям труда.

Во второй главе анализируется результат проведенных исследований по аттестации рабочих мест по условиям труда, обосновывается экономический эффект от внедрения новых приборов.

Гигиенические факторы рабочей среды и трудового процесса

Вредными факторами могут быть:

1. физические факторы:

Температура, влажность, скорость движения воздуха, тепловое излучение; неионизирующие электромагнитные поля (ЭМП) и излучения - электростатическое поле;

Постоянное магнитное поле (в т.ч. гипогеомагнитное);

Электрические и магнитные поля промышленной частоты (50 Гц); широкополосные ЭМП, создаваемые ПЭВМ;

Электромагнитные излучения радиочастотного диапазона;

Широкополосные электромагнитные импульсы;

Электромагнитные излучения оптического диапазона (в т.ч. лазерное и ультрафиолетовое);

Ионизирующие излучения;

Производственный шум, ультразвук, инфразвук;

Вибрация (локальная, общая);

Аэрозоли (пыли) преимущественно фиброгенного действия;

Освещение - естественное (отсутствие или недостаточность), искусственное (недостаточная освещенность, пульсация освещенности, избыточная яркость, высокая неравномерность распределения яркости, прямая и отраженная слепящая блесткость);

Электрически заряженные частицы воздуха - аэроионы;

2. химические факторы:

Химические вещества, смеси, в т.ч. некоторые вещества биологической природы (антибиотики, витамины, гормоны, ферменты, белковые препараты), получаемые химическим синтезом и/или для контроля которых используют методы химического анализа;

3. биологические факторы:

Микроорганизмы-продуценты, живые клетки и споры, содержащиеся в бактериальных препаратах, патогенные микроорганизмы - возбудители инфекционных заболеваний;

Виброакустические

Шумом называется любой нежелательный звук или совокупность таких звуков. Звук представляет собой волнообразно распространяющийся в упругой среде колебательный процесс в виде чередующихся волн сгущения и раздражения частиц этой среды - звуковые волны. Источником звука может являться любое колеблющееся тело. При соприкосновении этого тела с окружающей средой образуются звуковые волны. Волны сгущения вызывают повышение давления в упругой среде, а волны разряжения - понижение. Отсюда возникает понятие звукового давления - это переменное давление, возникающее при прохождении звуковых волн дополнительно к атмосферному давлению.

Звуковое давление - переменная составляющая давления воздуха или газа, возникающая в результате звуковых колебаний, Па.

По характеру спектра шума выделяют:

Тональный шум, в спектре которого имеются выраженные тоны.

Тональный - характер шума для практических целей устанавливается измерением в 1/3 октавных полосах частот по превышению уровня в одной полосе над соседними не менее чем на 10 дБ.

По временным характеристикам шума выделяют:

Постоянный шум, уровень звука которого за 8-часовой рабочий день или за время измерения в помещениях жилых и общественных зданий, на территории жилой застройки изменяется во времени не более чем на 5 дБА при измерениях на временной характеристике шумомера "медленно";

Непостоянный шум, уровень которого за 8-часовой рабочий день, рабочую смену или во время измерения в помещениях жилых и общественных зданий, на территории жилой застройки изменяется во времени более чем на 5 дБА при измерениях на временной характеристике шумомера "медленно".

Непостоянные шумы подразделяют на:

Колеблющийся во времени шум, уровень звука которого непрерывно изменяется во времени;

Прерывистый шум, уровень звука которого ступенчато изменяется (на 5 дБА и более), причем длительность интервалов, в течение которых уровень остается постоянным, составляет 1 с и более;

Импульсный шум, состоящий из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с, при этом уровни звука в дБАI и дБА, измеренные соответственно на временных характеристиках "импульс" и "медленно", отличаются не менее чем на 7 дБ.

Степень вредности и опасности условий труда при действии виброакустических факторов устанавливается с учетом их временных характеристик (постоянный, непостоянный шум, вибрация и т.д.).

Допустимый уровень шума - это уровень, который не вызывает у человека значительного беспокойства и существенных изменений показателей функционального состояния систем и анализаторов, чувствительных к шуму.

Предельно допустимый уровень (ПДУ) шума - это уровень фактора, который при ежедневной (кроме выходных дней) работе, но не более 40 часов в неделю в течение всего рабочего стажа, не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений. Соблюдение ПДУ шума не исключает нарушения здоровья у сверхчувствительных лиц.

Оценка условий труда при воздействии на работника постоянного шума проводится по результатам измерения уровня звука, в дБА, по шкале "А" шумомера на временной характеристике "медленно".

Оценка условий труда при воздействии на работника непостоянного шума производится по результатам измерения эквивалентного уровня звука за смену (интегрирующим шумомером) или расчетным способом.

При воздействии в течение смены на работающего шумов с разными временными (постоянный, непостоянный - колеблющийся, прерывистый, импульсный) и спектральными (тональный) характеристиками в различных сочетаниях измеряют или рассчитывают эквивалентный уровень звука.

Эквивалентный (по энергии) уровень звука, LАэкв., дБА, непостоянного шума - уровень звука постоянного широкополосного шума, который имеет такое же среднеквадратичное звуковое давление, что и данный непостоянный шум в течение определенного интервала времени.

Для получения в этом случае сопоставимых данных измеренные или рассчитанные эквивалентные уровни звука импульсного и тонального шумов следует увеличить на 5 дБА, после чего полученный результат можно сравнивать с ПДУ без внесения в него понижающей поправки, установленной СН 2.2.4/2.1.8.562-96.

Инфразвук - это еще мало изученный фактор производственной среды, который способен оказывать неблагоприятное влияние на организм человека и его работоспособность.

В современной акустике под звуком понимают механические колебания в сплошной упруго-инерционной среде, например, твердой, жидкой или газообразной. В соответствии с определением звуковые колебания охватывают диапазон частот теоретически от нуля до бесконечности.

В зависимости от частоты колебаний совершенно условно (для удобства изучения явления) звуковые колебания подразделяются на инфразвуковые, акустические, ультразвуковые.

Согласно такой классификации, под инфразвуком (ИЗ) принято понимать звуковые колебания с частотами ниже 20 Гц. Звуковые колебания в диапазоне от 20 Гц до 20 кГц - акустические (слышимые), а выше 20 кГц - ультразвуковые.

Физическая природа звука и инфразвука одна и та же. Разделение их обусловлено особенностями слухового анализатора человека, который воспринимает лишь определенный диапазон частот. Границы слышимости являются условными. Известно, что они зависят от индивидуальной чувствительности звуковосирииимающего аппарата и возрастных особенностей слуховой функции человека.

Таким образом, инфразвуком (инфразвуковым шумом) называют любые акустические колебания или совокупность таких колебаний в частотном диапазоне до 20 Гц. Для гигиенической оценки производственного инфразвука практический интерес представляет частотный диапазон от 1,6 до 20 Гц, включающий четыре октавных полосы со среднегеометрическими частотами 2, 4, 8 и 16 Гц или двенадцать треть октавных полос со среднегеометрическими частотами 1,6; 2; 2,5; 3,15; 4; 5; 6,3; 8; 10; 12,5; 16 и 20 Гц. В целях сравнительной оценки спектральных кривых шумов дополнительно используется октава 31,5 Гц.

Проблема физиологического воздействия инфразвука является очень сложной и ее изучение затруднено по многим причинам, и главная из них - это то, что трудно установить границу между действием инфразвука и действием слышимого звука. Такие переходные процессы как шумы, или взрывы, всегда имеют инфразвуковые составляющие, уровень которых обычно выше звукового давления. На близком или среднем расстоянии от источника всегда происходит смешение составляющих всех частот, вследствие чего возникает вопрос - какие из этих составляющих и, в какой степени являются причинами возможных вредных воздействий? То же самое происходит в случае периодических шумов, производимых двигателями, компрессорами или другими техническими устройствами. Или воздействие сильных звуков, которые содержат в своем составе инфразвук, что является очень вредным, поскольку защита от их действия весьма затруднена. Действительно, наивысшая спектральная плотность, обнаруженная в самолетах, автомашинах и т.п., почти всегда концентрируется в области инфразвука. Другая трудность заключается в относительно малой надежности экспериментов. Если в области шумов и звуковых ударов произведено огромное количество исследований, то наоборот, действие периодических инфразвуков изучено довольно мало.

Предельно допустимые уровни инфразвука на рабочих местах согласно СН 2.2.4/2.1.8.583-96 "Инфразвук на рабочих местах, в жилых и общественных помещениях и на территории жилой застройки" дифференцированы по видам работ, в частности для работ различной степени тяжести и работ различной степени интеллектуально-эмоциональной напряженности. Поэтому оценку условий труда работников, подвергающихся воздействию инфразвука, следует начинать с количественной оценки тяжести и напряженности труда, что позволит определить соответствующий норматив для конкретного рабочего места.

Непостоянные инфразвуковые шумы характеризуются эквивалентными (по энергии) уровнями, которые оказывают такое же действие на организм человека, как и постоянный инфразвуковой шум.

Ультразвук - это упругие колебания и волны с частотой выше 20 кГц, неслышимые человеческим ухом. В настоящее время удается получать ультразвуковые колебания с частотой до 10 ГГц. Соответственно указанным частотным диапазонам, область длины ультразвуковых воли в воздухе составляет- от 1,6 до 0,3 * 104 см, в жидкостях от 6,0 до 1,2 * 104 см, и в твердых телах - от 20,0 до 4,0 * 10 см.

Ультразвуковые волны по своей природе не отличаются от упругих воли слышимого диапазона. Распространение ультразвука подчиняется основным законам, общим для акустических воли любого диапазона частот. К основным законам распространения ультразвука относятся законы отражения и преломления па границах различных сред, дифракция и рассеяние ультразвука при наличии препятствий и неоднородностей на границах, законы волноводного распространения в ограниченных участках среды.

Вместе с тем, высокая частота ультразвуковых колебаний и малая длина волн обусловливают ряд специфических свойств, присущих только ультразвуку.

Во-первых, это возможность визуального наблюдения ультразвуковых воли оптическими методами. Далее, благодаря малой длине волны ультразвуковые волны хорошо фокусируются, и, следовательно, возможно получение направленного излучения. Еще одна весьма важная особенность ультразвука заключается в возможности получения высоких значений интенсивности при относительно небольших амплитудах колебаний.

Уменьшение амплитуды и интенсивности ультразвуковой волны по мере ее распространения в заданном направлении, т.е. затухание определяется рассеиванием и поглощением ультразвука, переходом ультразвуковой энергии в другие формы, например, в тепловую.

К техногенным источникам ультразвука относятся все виды ультразвукового технологического оборудования, ультразвуковые приборы и аппаратура промышленного, медицинского, бытового назначения, которые генерируют ультразвуковые колебания в диапазоне частот от 18 кГц до 100 МГц и выше. К источникам ультразвука относится также оборудование, при эксплуатации которого ультразвуковые колебания возникают как сопутствующий фактор.

В настоящее время ультразвук широко применяется в разных отраслях хозяйства. Машиностроение, металлургия, химия, радиоэлектроника, строительство, геология, легкая и пищевая промышленность, рыбный промысел, медицина -- вот далеко неполный перечень основных областей использования ультразвуковых колебаний.

Среди многообразия способов применения ультразвука с гигиенических позиций целесообразно выделить два основных направления:

Применение низкочастотных (до 100 кГц) ультразвуковых колебаний, распространяющихся контактным и воздушным путем, для активного воздействия па вещества и технологические процессы - очистка, обеззараживание, сварка, пайка, механическая и термическая обработка материалов (сверхтвердых сплавов, алмазов, керамики и др.), коагуляция аэрозолей; в медицине - ультразвуковой хирургический инструментарий, установки для стерилизации рук медперсонала, различных предметов и др.

Применение высокочастотных (100 кГц -- 100 МГц и выше) ультразвуковых колебаний, распространяющихся исключительно контактным путем, для неразрушающего контроля и измерений; в медицине - диагностика и лечение различных заболеваний.

Ультразвуковые волны способны вызывать разнонаправленные биологические эффекты, характер которых определяется интенсивностью ультразвуковых колебаний, частотой, временными параметрами колебаний (постоянный, импульсный), длительностью воздействия, чувствительностью тканей.

При разработке эффективных профилактических мероприятий, направленных на оптимизацию и оздоровление условий труда работников ультразвуковых профессий, на первое место выдвигаются вопросы гигиенического нормирования ультразвука, как неблагоприятного физического фактора производственной среды и среды обитания.

Новые федеральные санитарные нормы и правила устанавливают гигиеническую классификацию ультразвука, воздействующего на человека-оператора; нормируемые параметры и предельно допустимые уровни ультразвука для работающих и населения; требования к контролю воздушного и контактного ультразвука, меры профилактики. Следует отметить, что настоящие нормы и правила не распространяются на лиц (пациентов), подвергающихся воздействию ультразвука в лечебно-диагностических целях.

В отличие от СанПиН 2.2.4/2.1.8.582-96, действующим в настоящее время ГОСТ 12.1.001-89 „ССБТ. Ультразвук. Общие требования безопасности" установлены нормативы только для работающих.

Нормируемыми параметрами воздушного ультразвука являются уровни звукового давления в децибелах в третьоктавных полосах со среднегеометрическими частотами 12,5; 16; 20; 25; 31,5; 40; 50; 63; 80; 100 кГц.

Нормируемыми параметрами контактного ультразвука являются пиковые значения виброскорости или ее логарифмические уровни в дБ в октавных полосах со среднегеометрическими частотами 16; 31,5; 63; 125; 250; 500; 1000; 2000; 4000; 8000; 16000; 31500 кГц.

Оценка условий труда при воздействии на работника воздушного ультразвука (с частотой колебаний в диапазоне от 20,0 до 100,0 кГц) проводится по результатам измерения уровня звукового давления на рабочей частоте источника ультразвуковых колебаний. И оценка условий труда при воздействии контактного ультразвука (с частотой колебаний в диапазоне от 20,0 кГц до 100,0 МГц) проводится по результатам измерения пикового значения виброскорости (м/с) или его логарифмического уровня (дБ) на рабочей частоте источника ультразвуковых колебаний.

При совместном воздействии контактного и воздушного ультразвука ПДУ контактного ультразвука следует принимать на 5 дБ ниже указанных в СанПиН 2.2.4/2.1.8.582-96.

Вибрация - это движение точки или механической системы, при котором происходят колебания характеризующих его скалярных величин.

Абсолютные значения параметров, характеризующих вибрацию (виброскорость, виброускорения), изменяются в очень широких пределах поэтому в практике используются понятие уровня параметров.

Вибрация классифицируется:

1) По способу передачи;

Общая, передающаяся через опорные поверхности на тело сидящего или стоячего человека.

Локальная, передающаяся через руки человека (вибрация передающаяся на ноги сидячего человека и на предплечья, контактирующая с вибрирующими поверхностями рабочих столов, относятся к локальной).

2) По источнику возникновения:

Общая в жилых помещениях и общественных зданиях (от внешних и внутренних источников)

Общая на производстве (категории 1,2,3)

Локальная на производстве (а) локальная вибрация, передающаяся человеку от ручного механизированного инструмента (с двигателями), органов ручного управления машинами и оборудованием; б) локальная, передающаяся человеку от ручного немеханизированного инструмента (без двигателей).

Общая вибрация 1 категории - транспортная вибрация, воздействующая на человека на рабочих местах самоходных и прицепных машин, транспортных средств при движении по местности, аграфонам и дорогам (в том числе при их строительстве).

Общая вибрация 2 категории - транспортно - технологическая вибрация, воздействующая на человека на рабочих местах машин, перемещающихся по специально подготовленным поверхностям производственных помещений, промышленных площадок, горных выработок.

По временным характеристикам:

Постоянная вибрация - вибрация, величина нормируемых параметров которой изменяется не более чем в 2 раза (на 6 дБ) за время наблюдения.

Непостоянная вибрация - вибрация, величина нормируемых параметров которой изменяется не менее чем в 2 раза (на 6 дБ) за время наблюдения

Гигиеническая оценка воздействующей на работника постоянной вибрации (общей, локальной) проводится согласно СН 2.2.4/2.1.8.566-96

"Производственная вибрация, вибрация в помещениях жилых и общественных зданий" методом интегральной оценки по частоте нормируемого параметра. При этом для оценки условий труда измеряют или рассчитывают корректированный уровень (значение) виброскорости или виброускорения (согласно приложению к СН 2.2.4/2.1.8.566-96).

Гигиеническая оценка воздействующей на работника непостоянной вибрации (общей, локальной) проводится согласно СН 2.2.4/2.1.8.566-96 методом интегральной оценки по эквивалентному (по энергии) уровню нормируемого параметра. При этом для оценки условий труда измеряют или рассчитывают эквивалентный корректированный уровень (значение) виброскорости или виброускорения (согласно приложению к СН 2.2.4/2.1.8.566-96).

Световая среда

Одним из ведущих факторов, обеспечивающих нормальную жизнедеятельность организма человека, является полноценная световая, ультрафиолетовая и инфракрасная среда, создаваемая Солнцем и разнообразными искусственными источниками, отличающимися спектральной характеристикой.

Видимому излучению, свету, как одному из раздражителей внешней среды, обладающему значительным биологическим действием и сопутствующему человеку во всей его жизни, принадлежит основная роль в регуляции важнейших функций организма.

Гигиеническое значение видимого излучения, которое в естественных условиях меняется в широких пределах, речь, в конечном итоге, идет об изменениях функций зрительного анализатора, ибо изменения, происходящие в анализаторе, будут с известной полнотой отражать влияние адекватного раздражителя.

Зрительный анализатор -- один из основных органов чувств. Он не только выполняет роль периферического рецепторного аппарата, но и имеет ведущее значение в объединении всех органов чувств в единую функциональную систему анализаторов (П.К. Анохин, 1975, С.И. Вавилов, 1976). Кроме того, зрительный анализатор принадлежит важнейшая роль в регуляции биологических ритмов, а следовательно, и основных процессов жизнедеятельности организма.

Видимое излучение, являясь составной частью радиационного климата, есть адекватный раздражитель зрительного анализатора, через который поступает до 90% информации об окружающем нас мире.

Естественным источником света является Солнце, температура поверхности которого равна примерно 6 000°С. Интегральное излучение Солнца, приходящее к верхней границе атмосферы, характеризуется солнечной постоянной, т.е. тем количеством лучистой энергии, которое проходит за минуту через площадку 1 см2, перпендикулярно к солнечным лучам при среднем расстоянии между Землей и Солнцем около 150 млн. км. Различают тепловую солнечную постоянную, равную 1,895 кал/см2 мин (около 1317 Вт/м2), и световую солнечную постоянную, равную 137 000 лк. На поверхности Земли указанные постоянные несколько меньше и определяются как астрономическими факторами (вращение Земли вокруг оси и отклонение (Солнца), так и оптическими свойствами атмосферы, через которую проходит солнечное излучение.

Для характеристики естественного светового климата местности имеет значение длительность астрономического дня, продолжительность периода сияния Солнца, высота его стояния. От высоты стояния Солнца зависит и его спектральная характеристика, которая, в свою очередь, предопределяет биологическое действие интегрального солнечного излучения. В зависимости от высоты стояния Солнца меняется уровень освещенности как при безоблачной погоде -- в тени и на солнце, так и при пасмурной.

Организм человека в разной степени реагирует на воздействия того или иного характера естественного светового климата: как специфическими, так и неспецифическими сдвигами, направленными, в конечном счете, на уравновешивание организма со средой. Однако неполноценный световой климат и, в частности, длительное отсутствие видимого излучения, может явиться причиной изменения не только функционального состояния отдельных органов и систем, но и развития ряда патологических нарушений, среди которых особое место занимают аномалии рефракции. Наиболее отчетливо зависимость числа лиц с аномалией рефракции от характера естественного радиационного климата проявляется в условиях Севера.

Так, среди подростков Заполярья (возраст 15-17 лет) лиц, имеющих миопическую рефракцию, в 2--3 раза больше, чем среди подростков, проживающих в южных районах страны.

Динамические наблюдения за лицами, проживающими в разных климатических районах, позволили выявить, что весной у проживающих на Севере наблюдается более заметное ухудшение физиологических функций, чем осенью. Это свидетельствует о том, что проживание на Севере в зимний период года при низких уровнях освещенности, создаваемых лишь искусственными источниками излучения, без какого-либо естественного освещения, не способствует поддержанию зрительных функций на том уровне, который имеет место у них же в осенний период. Кроме того, для организма небезразличны характер и степень воздействия естественного светового климата, оказывающего широкое общебиологическое действие. Циркадная система, начинающая нервный путь от сетчатой оболочки глаза, контролирует суточные ритмы сна и бодрствования, температуры тела, гормональную секрецию и другие физиологические функции, включая и познавательную деятельность. Световое излучение является первичным стимулом, регулирующим циркадную систему, хотя другие внешние раздражители (звук, тепло, социальные сигналы) также могут влиять на функции чувств времени.

Сегодня существует понятие синдрома «сезонного расстройства» (СР). У людей с диагнозом «сезонного расстройства» наблюдаются эмоциональные депрессии, большой упадок физических сил, повышенный аппетит и потребность в сне, а также желание замкнуться в себе в осенне-зимний период. Светотерапия, как метод лечения данного синдрома, широко применяется и оказывает положительное воздействие на людей с нарушениями сна, менструального цикла, пищеварения. Эта область терапии широко развивается, и световое лечение успешно используется при болезнях, связанных с СР и работой в ночную смену. Причем результаты объективных исследований биохимии крови на содержание в ней мелатонина позволили установить, что при освещенности 800 лк в организме человека не возникают изменения, характерные для светлого времени суток, и только освещенность 2500 лк вызывает изменение биохимии крови, характерное для светового дня (Дж.К. Брейнард, К.А. Бернекер, 1996).

Отсутствие или недостаток естественного света в производственных помещениях связаны со строительством безоконных и бесфонарных зданий или зданий соответствующих строительно-планировочных решений (одноэтажных многопролетных или многоэтажных зданий большой ширины) с недостаточной естественной освещенностью.

С отрицательным воздействием на работающих отсутствия естественного света связано явление «светового голодания». «Световое голодание» -- это состояние организма, обусловленное дефицитом ультрафиолетового излучения и проявляющееся в нарушении обмена веществ и снижении резистентности организма. Кроме того, продолжительная работа в помещении без естественного света может оказывать неблагоприятное психофизиологическое воздействие на работающих из-за отсутствия связи с внешним миром, ощущения замкнутости пространства, особенно в небольших по площади помещениях, монотонности искусственной световой среды. Все это вызывает неприятные субъективные ощущения у работающих, приводит к ухудшению их самочувствия, настроения и снижению работоспособности.

Высокая производительность труда тесно связана с рациональным производственным освещением, которое может создаваться естественным и искусственными источниками света.

Видимое излучение относится к группе производственных факторов, для которых, кроме оптимальной величины, следует определять и тот минимальный уровень, т.е. нижнюю границу оптимума - «не менее», за пределами которой зрительный анализатор не может выполнять данную работу в заданном объеме. Верхняя же граница в условиях искусственной световой среды будет определяться техническими и энергетическими возможностями сегодняшнего дня.

Непосредственной причиной травм при неудовлетворительным освещении может быть как непосредственное ухудшение условий наблюдения и плохая видимость в рабочей зоне, так и повышенное утомление работающих, приводящие к снижению концентрации внимания.

Возможность отрицательного воздействия условий освещения на работающих обусловливается рядом факторов:

1) отсутствием или недостаточностью естественного света;

2) пониженной освещенностью;

3) повышенной яркостью;

4) прямой и отраженной блескостью;

5) повышенной пульсацией освещенности;

6) повышенным уровнем ультрафиолетового излучения.

Оценка параметров световой среды по естественному и искусственному освещению проводится по критериям, приведенным соответствии с Руководством Р 2.2.2006-05 «Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. Критерии и классификация условий труда», СНиП 23-05-95* «Естественное и искусственное освещение», СанПиН 2.2.1/2.1.1.1278-03 «Гигиеническое требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий», СанПиН 2.2.2/2.4.1340-03 «Гигиенические требования к персональным электронно-вычислительным машинам организация работы», СанПиН 2.2.2.1332-03 «Гигиенические требования к организации работы на копировально-множительной технике», отраслевыми и ведомственными нормативными документами по освещению, и в соответствии с Методическими указаниями «Оценка освещения рабочих мест».

Естественное освещение оценивается по коэффициенту естественной освещенности (КЕО). При расположении рабочего места в нескольких зонах с различными условиями естественного освещения, в т.ч. и вне зданий, класс условий труда присваивается с учетом времени пребывания в этих зонах.

Искусственное освещение оценивается по ряду показателей (освещенности, прямой блесткости, коэффициенту пульсации освещенности и другим нормируемым показателям освещения). После присвоения классов по отдельным показателям проводится окончательная оценка по фактору "искусственное освещение" путем выбора показателя, отнесенного к наибольшей степени вредности.

При выполнении на рабочем месте различных зрительных работ или при расположении рабочего места в нескольких зонах (помещениях, участках, на открытой территории и т.п.) оценка условий труда по показателям искусственного освещения проводится с учетом времени выполнения этих зрительных работ или с учетом времени пребывания в разных зонах работы. При этом вначале определяется класс условий труда с учетом времени воздействия по каждому показателю отдельно, а затем присваивается класс по фактору "искусственное освещение" в соответствии с методикой, изложенной в Методических указаниях "Оценка освещения рабочих мест".

Общая оценка условий труда по фактору "Освещение" производится с учетом возможности компенсации недостаточности или отсутствия естественного освещения путем создания благоприятных условий искусственного освещения и, при необходимости, компенсации ультрафиолетовой недостаточности.

Неионизирующие электромагнитные поля и излучения

К неионизирующим электромагнитным излучениям и полям (НЭ-МИП) относят электромагнитные излучения радиочастотного и оптического диапазонов, а также условно - статические электрические и постоянные магнитные поля, поскольку последние, строго говоря, излучениями не являются.

Электромагнитные излучения (ЭМИ) распространяются в виде электромагнитных волн, основными характеристиками которых являются: длина волны --X, м, частота колебаний -- f, Гц и скорость распространения -- V, м/с. В свободном пространстве скорость распространения ЭМИ равна скорости света -- С = 3 * 108 м/с.

Неионизирующие электромагнитные излучения и поля естественного происхождения. До недавнего времени основное внимание исследователей, занимающихся проблемой гигиенического нормирования неионизирующих электромагнитных излучений (НЭМИ), было сосредоточено на изучении биоэффектов ЭМИ антропогенного происхождения, уровни которых существенно превышают естественный электромагнитный фон Земли. Вместе с тем, в последние десятилетия была убедительно доказана важнейшая роль ЭМИ естественного происхождения в становлении жизни на Земле и ее последующих развитии и регуляции.

Биологическое действие неионизирующих электромагнитных излучений и полей естественного происхождения

Особое внимание при изучении влияния естественных ЭМИ на живую природу уделяется геомагнитному полю, как одному из важнейших факторов окружающей среды. Показано, что у различных организмов (от бактерий до млекопитающих) выявляется целый ряд реакций со стороны различных систем на изменение геомагнитного поля (Дубров А.П., 1974; Холодов Ю.А., 1976, 1982; Моисеева Н.И., Любицкий Р.И., 1986). Получены материалы, которые не только подтверждают чувствительность организмов к геомагнитному полю, но и не исключают у многих из них способности воспринимать содержащуюся в нем пространственно-временную информацию. Это свидетельствует о том, что геомагнитное поле является существенным компонентом среды обитания. Изучение магниторецепции у человека дало основание считать, что она представлена как в структурах мозга, так и надпочечниках (Дюрвард Д.Скайлс, 1989).В настоящее время стало ясно, что естественные электромагнитные поля следует рассматривать как один из важнейших экологических факторов. И если осуществление жизнедеятельности в условиях воздействия естественных ЭМИ является таким значимым и одновременно „привычным" для биосистем, то попадание в ситуацию, когда их уровни претерпевают резкие колебания или значительно снижены, может иметь серьезные негативные последствия.

Неионизирующие излучения – это электромагнитные излучения различной частоты, не вызывающие ионизацию атомов и молекул вещества (см. рис. 1).

Рисунок 1

Что собой представляет электромагнитное излучение или электромагнитная волна, легко представить на следующем примере. Если на водную гладь бросить камушек, то на поверхности образуются расходящиеся кругами волны. Они движутся от источника их возникновения (возмущения) с определенной скоростью распространения. Для электромагнитных волн возмущениями являются передвигающиеся в пространстве электрические и магнитные поля. Меняющееся во времени электрическое поле обязательно вызывает появление переменного магнитного поля, и наоборот. Эти поля взаимосвязаны (см. рис. 2).

Рисунок 2

Воздействие фактора на организм человека

Основным свойством всех волн, независимо от их природы, является перенос энергии без переноса вещества. Электромагнитные волны также переносят энергию, тем большую, чем больше их частота. Энергия электромагнитных волн воздействует на организм человека.

Рисунок 3

Экспериментальные данные как отечественных, так и зарубежных исследователей свидетельствуют о высокой биологической активности электромагнитных полей во всех частотных диапазонах. При относительно низком уровне электромагнитного поля (к примеру, для радиочастот выше 300 МГц это менее 1 мВт/см2 ) принято говорить о нетепловом или информационном характере воздействия на организм. Механизмы действия электромагнитного поля в этом случае еще мало изучены.

Классификация фактора

Неионизирующие излучения делятся на виды в зависимости от частоты излучения и того воздействия, которое они оказывают на человека. Вследствие физических особенностей и различного влияния на организм человека электромагнитных излучений разной частоты принято раздельное нормирование диапазонов неионизирующих излучений, а также статического электрического и постоянного магнитного полей, которые, строго говоря, не считаются излучениями.

В Руководстве Р 2.2.2006-05 неионизирующие излучения разделены на 14 видов (табл. 1).

Таблица 1

Вид излучения Измеряемые частоты Измеряемая характеристика излучения Единицы измерения
Геомагнитное поле (ослабление) Напряженность магнитного поля в А/м или магнитная индукцияв мкТл или нТл
Электростатическое поле Напряженность электростатического поля кВ/м
Постоянное магнитное поле Напряженность постоянного магнитного поля кА/м
Электрические поля промышленной частоты (50 Гц) 50 Гц В/м
Магнитные поля промышленной частоты (50 Гц) 50 Гц Напряженность периодического магнитного поля А/м
Электромагнитные поля на рабочем месте пользователя ПЭВМ I диапазон: Напряженность электрического поля В/м
" от 5 Гц до 2кГц Плотность магнитного потока нТл
" II диапазон: Напряженность электрического поля А/м
" от 2кГц до 400кГц Плотность магнитного потока нТл
Электромагнитные излучения радиочастотного диапазона: 0,01 – 0,03МГц От 0,01МГц до 0,03МГц
Электромагнитные излучения радиочастотного диапазона: 0,03 – 3МГц От 0,03 МГц до 3МГц Энергетическая экспозиция электромагнитного поля диапазона частот З0кГц – 3 МГц. (Контроль по электрической составляющей)
Электромагнитные излучения радиочастотного диапазона: 3 – 30 МГц От 3МГц до 30 МГц
Электромагнитные излучения радиочастотного диапазона: 30 – 300 МГц От 30МГц до 300 МГц
Электромагнитные излучения радиочастотного диапазона: 300МГц – 300 ГГц От 300МГц до 300 ГГц
Широкополосный электромагнитный импульс
Лазерное излучение Диапазон от 300 ГГц Энергетическая экспозиция Дж м2
" до 750 ТГц Облученность Вт м2
Ультрафиолетовое излучение Диапазон от 1 х 1013 Гц до 3 х 1016 Гц Интенсивность облучения Вт/м2

Геомагнитное поле

Геомагнитное поле (ГМП) – это постоянное магнитное поле Земли.

Ослабление геомагнитного поля оказывает отрицательное влияние на здоровье человека

Средняя напряженность поля на поверхности Земли составляет около 0,5 э (Эрстед) или 40 А/м, и сильно зависит от географического положения. Напряженность магнитного поля на магнитном экваторе около 0,34 э (Эрстед), у магнитных полюсов около 0,66 э. В некоторых районах (в так называемых районах магнитных аномалий) напряженность резко возрастает. В районе Курской магнитной аномалии она достигает 2 э.

Ослабление ГМП в производственных условиях происходит в экранированных сооружениях (экранирование от электромагнитных полей, генерируемых размещенным в помещении оборудованием), в подземных сооружениях метрополитена, в зданиях, выполненных из железобетонных конструкций, в кабинах скоростных лифтов, в кабинах буровых установок и экскаваторов, в салонах легковых автомобилей, в самолетах, на подводных лодках, в банковских хранилищах и т.д.

Нормируемые величины

Оценка и нормирование уровня ослабления геомагнитного поля производится на основании определения его интенсивности внутри помещения, объекта, транспортного средства и в открытом пространстве на территории, прилегающей к месту его расположения, с последующим расчетом коэффициента ослабления ГМП.

Коэффициент ослабления интенсивности ГМП равен отношению интенсивности ГМП открытого пространства к его интенсивности внутри помещения.

Классы условий труда по показателю «геомагнитное поле» приведены в таблице 2. Вредные условия труда по данном показателю определяются кратностью превышения ВДУ (раз).

Таблица 2

Методика измерения

Измерения интенсивности геомагнитного поля внутри помещения на каждом рабочем месте производятся на 3-х уровнях от поверхности пола с учетом рабочей позы:

  • 0,5 м, 1,0 м и 1,2 м – при рабочей позе сидя;
  • 0,5 м, 1,0 м и 1,7 м – при рабочей позе стоя.

Определяющим при расчете коэффициента ослабления ГМП является минимальное из всех зарегистрированных на рабочем месте значений интенсивности ГМП.

Средства измерений

Контроль гипогеомагнитных условий осуществляется посредством инструментальных измерений с использованием приборов ненаправленного приема, оснащенных изотропными датчиками, предназначенных для определения величины напряженности или индукции постоянного магнитного поля, с допустимой относительной погрешностью измерения не более 20% (Например, магнитометр трехкомпонентный малогабаритный – МТМ-0. Диапазон измерения напряженности магнитного поля от 0.5 до 200 А/м (см. рис. 4).

Рисунок 4

Электростатическое поле

Электростатические поля – поля неподвижных электрических зарядов или стационарные электрические поля постоянного тока.

Рисунок 5

Электростатические поля обладают сравнительно низкой биологической активностью и не вызывают заметных функциональных изменений в организме человека.

Нормируемые величины

Оценка и нормирование ЭСП осуществляется по уровню напряженности электрического поля дифференцированно в зависимости от времени его воздействия на работника за смену.

В соответствии с п. 3.2.3. Санитарных правил и нормативов СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях», предельно допустимый уровень напряженности электростатического поля Епду при воздействии <= 1 час за смену устанавливается равным 60 кВ/м .

При воздействии электростатического поля более 1 часа за смену Епду определяются по формуле:

$$\text{Епду} = \frac{60}{\sqrt{t}}$$

где t - время воздействия (час).

Таким образом, для 8-часовой рабочей смены Епду будет равен 21,2 кВ/м.

Классы условий труда по показателю «электростатическое поле» приведены в таблице 3. Вредные условия труда по данному показателю определяются кратностью превышения ПДУ (раз).

Таблица 3

Методика измерения

Согласно СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях» измерения проводят на высоте 0,5; 1,0 и 1,7 м (рабочая поза «стоя») и 0,5; 0,8 и 1,4 м (рабочая поза «сидя») от опорной поверхности. При гигиенической оценке напряженности ЭСП на рабочем месте определяющим является наибольшее из всех зарегистрированных значений.

Средства измерений

Измерение уровня электростатических полей проводятся приборами ЭСПИ-301, ИЭСП-01 (см. рис. 6).

Рисунок 6

Предельно допустимый уровень напряженности электростатического поля (Е) при воздействии 1 час за смену устанавливается равным 60 кВ/м.

Постоянное магнитное поле

Постоянное магнитное поле – не изменяющееся со временем магнитное поле. Магнитное поле создается движущимися электрическими зарядами и изменяющимися электрическими полями.

Источниками постоянных магнитных полей (ПМП) на рабочих местах являются постоянные магниты, электромагниты, сильноточные системы постоянного тока (линии передачи постоянного тока, электролитные ванны и другие электротехнические устройства ).

К воздействию ПМП у человека наиболее чувствительны системы, выполняющие регуляторные функции (нервная, сердечно-сосудистая, нейроэндокринная и др.).

Нормируемые величины

Оценка и нормирование ПМП осуществляется по уровню напряженности магнитного поля дифференцированно в зависимости от времени его воздействия на работника за смену для условий общего (на все тело) и локального (кисти рук, предплечье) воздействия.

Уровень ПМП оценивают в единицах напряженности магнитного поля (Н) в А/м или в единицах магнитной индукции (В) в мТл.

ПДУ напряженности (индукции) ПМП на рабочих местах представлены в таблице 4.

Таблица 4

Классы условий труда по показателю «постоянное магнитное поле» приведены в таблице 5. Вредные условия труда по данному показателю определяются кратностью превышения ПДУ (раз).

Таблица 5

Методика измерения

Согласно СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях» измерения проводят на высоте 0,5; 1,0 и 1,7 м (рабочая поза «стоя») и 0,5; 0,8 и 1,4 м (рабочая поза «сидя») от опорной поверхности.

Средства измерений

Для измерения постоянного магнитного поля можно применять следующие приборы: ТП2-2У, Ф-4354/1, Ф-4355, Ф-4325, ЕТМ-1 (производства «Wandel & Goltermann», Германия) (см. рис. 7).

Рисунок 7

Транспорт на электрической тяге – электропоезда (в том числе поезда метрополитена), троллейбусы, трамваи и т. п. – является относительно мощным источником магнитного поля в диапазоне частот от 0 до 1000 Гц. Максимальные значения плотности потока магнитной индукции в пригородных «электричках» достигают 75 мкТл при среднем значении 20 мкТл. Среднее значение магнитной индукции на транспорте с электроприводом постоянного тока зафиксировано на уровне 29 мкТл

Рисунок 8

Электромагнитные поля промышленной частоты

Электромагнитные поля промышленной частоты – электромагнитные поля с частотой 50 Гц.

Основными источниками электромагнитных полей промышленной частоты являются различные типы промышленного и бытового электрооборудования переменного тока частоты 50 Гц, в первую очередь, подстанции и воздушные линии электропередачи сверхвысокого напряжения, а также электробытовые приборы и электроинструмент, работающие от сети, электропроводка внутри зданий, станки и конвейерные линии, осветительная сеть, офисная техника, электротранспорт и т.п.

Основную опасность для человека представляет влияние на возбудимые структуры (нервная, мышечная ткани) наведенного электромагнитными полями промышленной частоты электрического тока. При этом для электрических полей рассматриваемого диапазона характерно слабое проникновение в тело человека, а для магнитных полей – организм практически прозрачен.

Нормируемые величины

Контроль уровней ЭМП частотой 50 Гц осуществляется раздельно для электрического и магнитного полей. Измеряемые величины: напряженность электрического поля Е [В/м] и напряженность магнитного поля Н [А/м].

Нормирование электромагнитных полей 50 Гц на рабочих местах персонала дифференцировано в зависимости от времени пребывания в электромагнитном поле.

Предельно допустимый уровень напряженности ЭП на рабочем месте в течение всей смены устанавливается равным 5 кВ/м .

При напряженностях в интервале больше 5 до 20 кВ/м включительно допустимое время пребывания в ЭП Т (час) рассчитывается по формуле:

$$\text{Т} = \frac{50}{Е}-2$$

Е - напряженность ЭП в контролируемой зоне, кВ/м;

Т - допустимое время пребывания в ЭП при соответствующем уровне напряженности, ч.

При напряженности свыше 20 до 25 кВ/м допустимое время пребывания в ЭП составляет 10 мин.

Пребывание в ЭП с напряженностью более 25 кВ/м без применения средств защиты не допускается.

Предельно допустимые уровни напряженности периодических (синусоидальных) МП устанавливаются для условий общего (на все тело) и локального (на конечности) воздействия.

ПДУ воздействия периодического магнитного поля частотой 50 Гц представлены в таблице 6.

Таблица 6

Классы условий труда по показателю «электромагнитные поля промышленной частоты» приведены в таблице 7. Вредные условия труда по данному показателю определяются кратностью превышения ПДУ (раз).

Таблица 7

Методика измерения

Согласно СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях» измерения напряженности ЭП и МП частотой 50 Гц должны проводиться на высоте 0,5; 1,5 и 1,8 м от поверхности земли, пола помещения или площадки обслуживания оборудования и на расстоянии 0,5 м от оборудования и конструкций, стен зданий и сооружений. Измерения и расчет напряженности электрического поля должны производиться при наибольшем рабочем напряжении электроустановки, а измерения и расчет напряженности (индукции) магнитного поля должны производиться при максимальном рабочем токе электроустановки.

Средства измерений

Измерения напряженностей электрического и магнитного полей промышленной частоты можно выполнить приборами П3-50, NFM-1 (см. рис. 9).

Рисунок 9

Электромагнитные поля на рабочем месте пользователя ПЭВМ

Рисунок 10

Нормируемые величины

Электромагнитное поле, создаваемое персональным компьютером, имеет сложный спектральный состав в диапазоне частот от 0 Гц до 1000 МГц (см. табл. 8).

Таблица 8

Классы условий труда по показателю «электромагнитные поля на рабочем месте пользователя ПЭВМ» приведены в таблице 9.

Таблица 9

Методика измерения

Согласно СанПиН 2.2.2/2.4.1340-03 «Гигиенические требования к персональным электронно-вычислительным машинам и организации работ» измерение уровней переменных электрических и магнитных полей, статических электрических полей на рабочем месте, оборудованном ПЭВМ, производится на расстоянии 50 см от экрана на трех уровнях на высоте 0,5 м, 1,0 м и 1,5 м. Измерения параметров электростатического поля проводить не ранее, чем через 20 минут после включения ПЭВМ.

Если на обследуемом рабочем месте, оборудованном ПЭВМ, интенсивность электрического и/или магнитного поля в диапазоне 5 – 2000 Гц превышает значения, приведенные в таблице 10, следует проводить измерения фоновых уровней ЭМП промышленной частоты (при выключенном оборудовании). Фоновый уровень электрического поля частотой 50 Гц не должен превышать 500 В/м.

Таблица 10. Временные допустимые уровни ЭМП, создаваемых ПЭВМ на рабочих местах

Средства измерений

Измерение электромагнитных полей, создаваемых ПЭВМ, проводят с помощью приборов ИМП-05 для измерения плотности магнитного потока, ИЭП-05 для измерения напряженности электрического поля, В-Е метра, П3-70 (см. рис. 11).



Рисунок 11

Электромагнитные излучения радиочастотного диапазона (ЭМИ РЧ)

Возникновение электромагнитных полей радиочастотного диапазона обусловлено действием электромагнитных излучений с частотой от 10 000 Гц (0,01 МГц) до 3 000 000 000 Гц (300 ГГц).

Источниками ЭМИ РЧ являются: аппаратура радиостанций, телевизионные передатчики, аппаратура систем сотовой связи, систем мобильной радиосвязи, спутниковой связи, радиорелейной связи, технологическое оборудование различного назначения, использующее сверхвысокочастотное излучение, медицинские терапевтические и диагностические установки (см. рис. 12).

Рисунок 12

Биологическое действие электромагнитных излучений радиочастотного диапазона (ЭМИ РЧ) зависит от частоты излучения, режима генерации (непрерывный, импульсный), условий воздействия на организм (постоянное, прерывистое, общее, местное, интенсивность, длительность).

Нормируемые величины

При проведении аттестации рабочих мест оценке подлежат электромагнитные излучения радиочастотного диапазона, приведенные в табл.11.

Таблица 11

Классы условий труда по показателю «электромагнитные излучения радиочастотного диапазона» приведены в таблице 12. Вредные условия труда по данному показателю определяются кратностью превышения ПДУ (раз).

Таблица 12

Фактор Оптимальный класс - 1 Допустимый класс - 2 Вредный класс - 3.1 Вредный класс - 3.2 Вредный класс - 3.3 Вредный класс - 3.4 Опасный класс - 4
Электромагнитные излучения радиочастотного диапазона 0,01-0,03 МГц естественный фон <= ПДУ <= 5 <= 10 > 10 - -
Электромагнитные излучения радиочастотного диапазона 0,03-3,0 МГц естественный фон <= ПДУ <= 5 <= 10 > 10 - -
Электромагнитные излучения радиочастотного диапазона 3,0-30,0 МГц естественный фон <= ПДУ <= 3 <= 5 <= 10 > 10 -
Электромагнитные излучения радиочастотного диапазона 30,0-300,0 МГц естественный фон <= ПДУ <= 3 <= 5 <= 10 > 10 > 100
Электромагнитные излучения радиочастотного диапазона 300,0-300,0 ГГц естественный фон <= ПДУ <= 3 <= 5 <= 10 > 10 > 100

Методика измерения

Согласно СанПиН 2.2.4.1191-03 «Электромагнитные поля в производственных условиях» измерения проводят на высоте 0,5; 1,0 и 1,7 м (рабочая поза «стоя») и 0,5; 0,8 и 1,4 м (рабочая поза «сидя») от опорной поверхности с определением максимального значения Е и Н или плотности потока энергии для каждого рабочего места.

Средства измерений

Для измерения интенсивности ЭМП в диапазоне частот до 300 МГц используются приборы, предназначенные для определения среднеквадратического значения напряженности электрического и/или магнитного полей с допустимой относительной погрешностью не более 30%.

Для измерений уровней ЭМП в диапазоне частот 300 МГц – 300 ГГц используются приборы, предназначенные для оценки средних значений плотности потока энергии с допустимой относительной погрешностью не более 40% в диапазоне 300 МГц – 2 ГГц и не более 30% в диапазоне свыше 2 ГГц (см. рис. 13).

Рисунок 13

Широкополосный электромагнитный импульс

Импульсные электромагнитные поля (ИЭМП) возникают вследствие действия электромагнитных излучений в виде импульсов различных частот и частотных полос.

Нормируемые величины

Основными нормируемыми параметрами при оценке воздействия импульсных электромагнитных полей (ИЭМП) на персонал являются

  • максимальное амплитудное значение напряженности электрического поля в импульсе (В/м),
  • общее количество электромагнитных импульсов (N) в течение рабочего дня.

Классы условий труда по показателю «широкополосный электромагнитный импульс» приведены в таблице 13. Вредные условия труда определяются кратностью превышения ПДУ (раз).

Таблица 13

Методика измерения

Контроль параметров широкополосного электромагнитного импульса проводится на радиотехнических объектах, оборудованных источниками импульсных электромагнитных полей проводится в соответствии с СанПиН 2.2.4.1329-03 «Требования по защите персонала от воздействия импульсных ЭМП» (см. рис. 14).

Измерения параметров ИЭМП в помещениях проводятся на высотах 0,5; 1,0 и 1,7 м от пола. Измерения в каждой точке проводятся не менее трех раз в трех взаимно перпендикулярных положениях измерительного преобразователя. При этом для дальнейшей обработки выбираются данные измерений с наибольшим значением амплитуды сигнала.

Средства измерений

Рисунок 14

Лазерное излучение

Природой лазерного излучения является электромагнитное излучение с частотой в диапазоне от 300 ГГц до 750 ТГц.

Источниками лазерного излучения являются промышленные, научные, медицинские лазеры – оптические квантовые генераторы, вырабатывающие узконаправленное, когерентное световое излучение высокой энергии.

Нормируемые величины

Нормируемыми параметрами лазерного излучения являются энергетическая экспозиция H (Дж м2) и облученность E (Вт м2), усредненные по ограничивающей апертуре.

Апертура – отверстие в защитном корпусе лазера, через которое испускается лазерное излучение.

Облученность – отношение потока излучения, падающего на малый участок поверхности, содержащий рассматриваемую точку, к площади этого участка.

Энергетическая экспозиция – физическая величина, определяемая интегралом облученности по времени.

Классы условий труда по показателю «лазерное излучение» приведены в таблице 14. Вредные условия труда по данному показателю определяются кратностью превышения ПДУ (раз).

Таблица 14

Методика измерения

Сущность дозиметрического контроля лазерного излучениям заключается в оценке тех характеристик лазерного излучения, которые определяют его способность вызывать биологические эффекты, и сопоставлении их с нормируемыми величинами.

  • Предупредительный дозиметрический контроль заключается в определении максимальных уровней энергетических параметров лазерного излучения в точках на границе рабочей зоны.
  • Индивидуальный дозиметрический контроль заключается в измерении уровней энергетических параметров излучения, воздействующего на глаза (кожу) конкретного работающего в течение рабочего дня.

Средства измерений

Для измерения параметров отражённого и рассеянного лазерного излучения с целью оценки степени опасности излучения для организма человека применяется лазерный дозиметр Ладин (см. рис. 15).

Рисунок 15

Ультрафиолетовое излучение

Ультрафиолетовое излучение (УФИ) – это электромагнитное излучение оптического диапазона с длиной волны от 200 до 400 нм и частотой от 1013 до 1016 Гц, подразделяемые в зависимости от биологической активности на области (см. рис. 16).

  • УФ-А (400 – 320 нм, длинноволновое УФИ);
  • УФ-В (320 – 280 нм, средневолновое УФИ);
  • УФ-С (280 – 200 нм, коротковолновое УФИ).

Рисунок 16

На открытой территории главным источником УФИ является Солнце, до поверхности Земли доходит УФИ в диапазоне 288 – 400 нм, более короткие волны УФИ поглощаются озоном стратосферы.

Воздействие УФИ от искусственных источников в производственных условиях может быть либо сопутствующим, когда источники испускают его в виде побочного продукта, либо основным, если источники специально предназначены для генерации УФИ с целью использования его свойств.

Основное УФИ создается, как правило, различными газоразрядными и флуоресцентными лампами и используется в дефектоскопии, для специальной сушки материалов, в полиграфической промышленности, химическом и деревообрабатывающем производствах, в сельском хозяйстве, в здравоохранении, при кино- и телесъемках. Промышленными процессами, где УФИ выступает в виде побочного продукта, являются сварка, работа с плазменной горелкой, работа с горячим металлом и стеклом у печи и т. д.

Критическими органами для воздействия УФИ на человека являются кожа и глаза.

Нормируемые величины

Измеряемой величиной УФ является интенсивность облучения измеряемая в Вт/м2.

Классы условий труда по показателю «ультрафиолетовое излучение» приведены в таблице 15.

Таблица 15

Методика измерения

Согласно СН № 4557-88 «Санитарные нормы ультрафиолетового излучения в производственных помещениях» измерения следует производить на рабочем месте на высоте 0,5, 1,0 и 1,5 м от пола, размещая приемник перпендикулярно максимуму излучения источника.

При использовании специальной одежды и средств защиты лица и рук, не пропускающих излучение (спилк, кожа, ткани с пленочным покрытием и т.п.), допустимая интенсивность облучения в области УФ-В + УФ-С (200 – 315 нм) не должна превышать 1 Вт/м2

Средства измерений

Приборы, применяемые для определения интенсивности ультрафиолетового излучения – радиометр ультрафиолетовый УФ-А «Аргус-04», УФ-радиометр «ТКА-АВС» и др. (см. рис. 17).

Рисунок 17

Особенности оценки неионизирующих излучений на объектах железнодорожного транспорта

На объектах железнодорожного транспорта следует контролировать следующие виды ЭМП:

  • электростатическое поле;
  • постоянное магнитное поле (в т.ч. гипогеомагнитное);
  • электрические и магнитные поля промышленной частоты (50 Гц);
  • широкополосные ЭМП, создаваемые ПЭВМ;
  • электромагнитные излучения радиочастотного диапазона;
  • электромагнитные излучения оптического диапазона (в т.ч. лазерное и ультрафиолетовое).

Измерения ЭМП в кабинах тягового подвижного состава должны проводиться в тех случаях, когда после ввода их в эксплуатацию были внесены какие-либо изменения в конструкцию и электрическое оборудование. У операторов теленаблюдения (следящих по видеомониторам за производственными процессами, обстановкой и пр.) следует проводить измерения электромагнитных полей от видеомониторов и источников ЭМП промышленной частоты (50 Гц).

На тяговых подстанциях участков переменного тока, у различных источников величина электрического поля колеблется в широком диапазоне (0,2 – 3,8 кВ/м), но не превышает 5,0 кВ/м, являясь допустимой. Превышения могут наблюдаться в тот момент, когда работники тяговой подстанции для осмотра оборудования поднимаются к устройствам по приставным лестницам. Такой вид осмотра составляет менее 5% рабочей смены (Рисунок 8). При обслуживании осветительных установок, расположенных на мачтах, вблизи контактной сети уровни напряженности электрического поля могут достигать 3,0 – 5,1 кВ/м. Для приведения рабочего места к допустимым условиям электромонтер должен находиться на мачтах не более 5 часов в смену .