Химические растворы. Виды растворов. Виды концентрации растворов Что называют растворами

Лекция по теме: «Растворы»

Понятие о дисперсных системах.

Дисперсными системами называются системы, в которых одно вещество, находясь в мелкораздробленном состоянии (дисперсная фаза), равномерно распределено в другом (дисперсная среда).

В зависимости от размеров частиц дисперсной фазы различают следующие дисперсные системы:

    Грубодисперсные системы, размер частиц велик (эмульсии, суспензии). Примером может служить раствор глины в воде.

    Коллоидные растворы (золи) (10 -9 -10 -6 ). К ним можно отнести раствор кремниевой кислоты, растворы солей кремниевой кислоты (силикатный клей).

    Истинные растворы, в которых размеры дисперсной фазы очень малы (10 -10 -10 -9 ).

По агрегатному состоянию фаз Вильгельм Фридрих Оствальд предложил ставшую весьма распространенной классификацию:

Дисперсные системы

Вид дисперсной системы, ее обозначение.

Примеры дисперсных систем

Дисперсионная фаза

Дисперсионная среда

Твердое тело

Газ (г)

Аэрозоль (т/г)

Пыль, дым, хлопья снега

Жидкость (ж)

Суспензии (т/ж)

Коллоидные растворы (т/ж)

Истинные растворы

(т/ж)

Глина, зубная паста, губная помада.

Раствор яичного белка, плазма крови, спиртовая вытяжка хлорофилла, кремниевая кислота.

Растворы солей, щелочей, сахара.

Твердое тело (т)

Твердые растворы (т/т)

Сплавы, минералы, цветные стекла.

Жидкость

Газ (г)

Аэрозоль (ж/г)

Туман, облака, моросящий дождь, струя из аэрозольного баллончика.

Жидкость(ж)

Эмульсия (ж/ж)

Истинные растворы (ж/ж)

Молоко, масло, майонез, крем, мази, эмульсионные краски.

Нисшие спирты +вода, ацетон + вода.

Твердое тело (т)

Твердая эмульсия (ж/т)

Жемчуг, опал.

Газ

Газ (г)

Дисперсной системы не образуется

Жидкость (ж)

Пена (г/ж)

Пена газированной воды, мыльная пена, взбитые сливки, взбитый крем, пастила.

Твердое тело (т)

Твердая пена (г/т)

Пенопласт, пенобетон, пеностекло, пемза, лава.

Дисперсные системы изучает специальный раздел химии – коллоидная химия. Мы будем знакомиться в основном с третьей группой – истинными растворами .

Растворы - гомогенные (однородные) системы переменного состава, которые содержат два или несколько компонентов.

По агрегатному состоянию растворы подразделяются:

Наиболее распространены жидкие растворы. Они состоят из растворителя (жидкости) и растворенных веществ (газообразных, жидких, твердых):

Жидкие растворы могут быть водные и неводные. Водные растворы - это растворы, в которых растворителем является вода. Неводные растворы - это растворы, в которых растворителями являются другие жидкости (бензол, спирт, эфир и т. д.).

На практике чаще применяются водные растворы.

Растворение веществ (образование растворов).

Растворение - сложный физико-химический процесс, который включает несколько стадий:

1. Разрушение кристаллической решетки растворенного вещества.

Рассмотрим растворение хлорида калия в воде.

Например, при внесении в воду кристалликов хлорида калия с их поверхности постепенно начинают отрываться ионы К + и С l - .

Причиной этого являются собственные колебательные движения частиц и притяжение со стороны молекул растворителя.

2. Постепенный переход частиц, образующих кристалл, в раствор.

Рис. . Схема разрушения кристаллической решетки хлорида калия в воде

3. Распределение частиц, перешедших в раствор, по всему объему растворителя.

Растворы, компонентами которых являются ионы, называются ионными (растворы электролитов, так как они проводят электрический ток). Растворы, компонентами которых являются электро-нейтральные частицы, называются молекулярными (растворы неэлектролитов).

Долгое время считалось, что растворитель - это среда, химически инертная по отношению к растворенному веществу. То есть между частицами растворителя и частицами растворенного вещества отсутствует межмолекулярное взаимодействие, как и в обычных механических смесях.

Данная теория получила название физической теории растворов . Основоположниками физической теории являлись Якоб Г. Вант-Гофф (1885 г.) и Сванте А. Аррениус (1883 г.).

Впоследствии оказалось, что физическая теория применима лишь к небольшой группе так называемых идеальных растворов. Примерами идеальных растворов являются многие газовые растворы (газовые смеси), образованные из не реагирующих между собой газов. Как и отдельные газы, такие газовые растворы подчиняются газовым законам. Физические свойства таких смесей (плотность, давление и др.) вычисляются как аддитивные (от лат. – сложение), т. е. из свойств компонентов, составляющих смесь. Например, общее давление газовой смеси равно сумме парциальных давлений14 ее компонентов (закон Дальтона, 1800 г.).

P общ. = P 1 + P 2 + … P n .

В 1887 г. Д.И. Менделеев предложил химическую, или сольватную (гидратную) теорию растворов . Он доказал, что в реальных растворах между молекулами растворителя и растворенного вещества происходит взаимодействие, которое носит различный характер:

1. Химическое (донорно-акцепторное взаимодействие) взаимодействие, между растворителем и растворенным веществом. Например, хлор, растворяясь, взаимодействует с водой с образованием хлорной воды:

С l 2 + Н 2 O HCl + НОС l .

2. Ион-дипольное взаимодействие (при растворении веществ с ионной кристаллической решеткой). Например, в случае растворения хлорида натрия образуются ионы натрия и хлора, вокруг которых за счет сил электростатического притяжения удерживаются молекулы воды.

3. Диполь-дипольное взаимодействие (при растворении веществ с молекулярной кристаллической решеткой).

Доказательством физико-химического характера процесса растворения являются тепловые эффекты при растворении, т. е. выделение или поглощение теплоты.

Тепловой эффект растворения равен сумме тепловых эффектов физического и химического процессов. Физический процесс протекает с поглощением теплоты, химический - с выделением.

Если в результате гидратации (сольватации) выделяется больше теплоты, чем ее поглощается при разрушении структуры вещества, то растворение - экзотермический процесс. Выделение теплоты наблюдается, например, при растворении в воде таких веществ, как NaOH ; AgNO 3 ; H 2 SO 4 , ZnSO 4 и др.

Если для разрушения структуры вещества необходимо больше теплоты, чем ее образуется при гидратации, то растворение - эндотермический процесс. Это происходит например, при растворении в воде NaNO 3 ; КС l ; K 2 SO 4 ; KNO 2 ; NH 4 Cl и др.

Итак, разрушение структуры растворяемого вещества и распределение его частиц между молекулами растворителя - это физический процесс. Одновременно происходит взаимодействие молекул растворителя с частицами растворенного вещества, т. е. химический процесс. В результате этого взаимодействия образуются сольваты.

    Сольваты - продукты переменного состава, которые образуются при химическом взаимодействии частиц растворенного вещества с молекулами растворителя.

Если растворителем является вода, то образующиеся сольваты называются гидратами. Процесс образования сольватов называется сольватацией. Процесс образования гидратов называется гидратацией. Гидраты некоторых веществ можно выделить в кристаллическом виде при выпаривании растворов. Например:

При растворении в воде сульфата меди (II) происходит его диссоциация на ионы:

CuSO 4 Cu 2+ + SO 4 2-

Образующиеся ионы взаимодействуют с молекулами воды:

При выпаривании раствора образуется кристаллогидрат сульфата меди (II) – CuSO 4 2 O .

Кристаллические вещества, содержащие молекулы воды, называются кристаллогидратами.

Вода, входящая в их состав, называется кристаллизационной водой. Примеры

Одновременно с процессом растворения происходит обратный процесс - процесс кристаллизации . Перешедшие в раствор молекулы находятся в непрерывном движении. Они могут столкнуться с твердой поверхностью еще не растворившегося вещества, снова притянуться к ней и вернуться в состав кристалла. Вероятность такого столкновения тем выше, чем выше концентрация частиц растворенного вещества. А так как концентрация частиц растворенного вещества растет по мере растворения, то в какой-то момент времени скорость растворения становится равной скорости кристаллизации. При этом в раствор переходит столько же частиц, сколько их выделяется из раствора. То есть вещество больше не растворяется.

Раствор, в котором данное вещество при данной температуре больше не растворяется (т. е. раствор, находящийся в равновесии с растворяемым веществом), называется насыщенным .

Раствор, в котором еще можно растворить добавочное количество данного вещества, называется ненасыщенным .

Раствор, содержащий растворенного вещества больше, чем его должно быть в данных условиях в насыщенном растворе, называется пересыщенным .

В спокойном состоянии они могут годами оставаться без изменения.

Но стоит бросить в раствор кристаллик того вещества, которое в нем растворено, как вокруг него начинают расти другие кристаллы и через некоторое время весь избыток растворенного вещества выкристаллизовывается. Иногда кристаллизация начинается от простого сотрясения раствора или от трения стеклянной палочкой о стенки сосуда, в котором находится раствор. При кристаллизации выделяется значительное количество теплоты, вследствие чего сосуд с раствором заметно нагревается. Очень легко образуют пересыщенные растворы глауберова соль, бура, тиосульфат натрия.

В итоге, пересыщенные растворы являются неустойчивыми системами. Они Способны к существованию только при отсутствии в системе твердых частиц растворенного вещества.

Количественной характеристикой растворимости является коэффициент растворимости.

Коэффициент растворимости показывает, какая максимальная масса вещества может раствориться в 1000 мл растворителя при данной температуре. Растворимость выражают в граммах на литр (г/л).

По растворимости в воде вещества делят на 3 группы:

Растворимость веществ зависит от природы растворителя, от природы растворенного вещества, температуры, давления (для газов). Растворимость газов при повышении температуры уменьшается, при повышении давления - увеличивается.

Зависимость растворимости твердых веществ от темпе ратуры показывают кривые растворимости . Растворимость многих твердых веществ увеличивается при повышении температуры.

Рис. Кривые растворимости некоторых солей

По кривым растворимости можно определить:

1) коэффициент растворимости веществ при различных температурах;

2 ) массу растворенного вещества, которое выпадает в осадок при охлаждении раствора от t 1 °С до t 2 ° С.

Процесс выделения вещества путем испарения или охлаждения его насыщенного раствора называется перекристаллизацией. Перекристаллизация используется для очистки веществ.

Важной характеристикой любого раствора является его состав.

Количественная характеристика состава растворов

Для качественной характеристики растворов используют понятия «разбавленный раствор» (содержит мало растворенного вещества) и «концентрированный раствор» (содержит много растворенного вещества). Но границы между ними условны.

При работе с растворами необходимо знать их количественный состав. Количественный состав растворов выражается различными способами. Мы изучим два способа: массовая доля растворенного вещества и молярная концентрация (молярность).

Массовая доля растворенного вещества

    Массовой долей растворенного вещества называется отношение массы растворенного вещества к массе раствора:

Где

ω - массовая доля растворенного вещества, выраженная и долях единицы;

m (в-ва) - масса растворенного вещества, г;

m (р-ра) - масса раствора, г.

Массовую долю можно выражать также в процентах (%):

Где

Массовую долю растворенного вещества в процентах (%) часто называют процентной концентрацией раствора.

Молярная концентрация

    Молярная концентрация показывает число молей растворенного вещества в одном литре раствора.

Молярную концентрацию можно рассчитать по формуле

На практике часто переходят от одного способа выражения концентрации к другому по известной плотности раствора, применяя формулу т = ρ V.

Если в сосуд с водой поместить кристаллы поваренной соли, сахара или перманганата калия (марганцовки), то мы можем наблюдать, как количество твердого вещества постепенно уменьшается. При этом вода, в которую были добавлены кристаллы, приобретает новые свойства: у нее появляется соленый или сладкий вкус (в случае марганцовки появляется малиновая окраска), изменяется плотность, температура замерзания и т.д. Полученные жидкости уже нельзя назвать водой, даже если они неотличимы от воды по внешнему виду (как в случае с солью и сахаром). Это – растворы .

Растворы - однородная многокомпонентная система, состоящая из растворителя, растворённых веществ и продуктов их взаимодействия.

Растворы не отстаиваются и сохранятся все время однородными. Если раствор профильтровать через самый плотный фильтр, то ни соль, ни сахар, ни марганцевокислый калий не удается отделить от воды. Следовательно, эти вещества в воде раздроблены до наиболее мелких частиц – молекул. Молекулы могут опять собраться в кристаллы только тогда, когда мы выпарим воду. Таким образом, растворы – это молекулярные смеси.

По агрегатному состоянию растворы могут быть жидкими (морская вода) , газообразными (воздух) или твёрдыми (многие сплавы металлов).
Размеры частиц в истинных растворах - менее 10 -9 м (порядка размеров молекул).

Любой раствор состоит из растворителя и растворенного вещества . В приведенных примерах растворителем является вода. Но не всегда обязательно вода является растворителем. Например, можно получить раствор воды в серной кислоте. Здесь растворителем будет кислота. Можно приготовить и растворы кислоты в воде.

Из двух или нескольких компонентов раствора растворителем является тот, который взят в большем количестве и имеет то же агрегатное состояние, что и раствор в целом.

** Существуют растворы не только жидкие, но и газовые и даже твердые. Например, воздух – раствор кислорода и еще нескольких газов в азоте. Сплавы металлов представляют собой твердые растворы металлов друг в друге. Газы, как мы уже знаем, способны растворяться в воде.

Давайте разберемся в том, как происходит растворение веществ. Для этого понаблюдаем, как растворяется добавленный в чай сахар. Если чай холодный, то сахар растворяется медленно. Наоборот, если чай горячий и размешивается ложечкой, то растворение происходит быстро.

Попадая в воду, молекулы сахара, находящиеся на поверхности кристаллов сахарного песка, образуют с молекулами воды донорно-акцепторные (водородные) связи. При этом с одной молекулой сахара связывается несколько молекул воды. Тепловое движение молекул воды заставляет связанные с ними молекулы сахара отрываться от кристалла и переходить в толщу молекул растворителя (рис. 7-2).

Рис. 7-2. Молекулы сахара (белые кружочки), находящиеся на поверхности кристалла сахара, окружены молекулами воды (темные кружочки). Между молекулами сахара и воды возникают водородные связи, благодаря которым молекулы сахара отрываются от поверхности кристалла. Молекулы воды, не связанные с молекулами сахара, на рисунке не показаны.

Молекулы сахара, перешедшие из кристалла в раствор, могут передвигаться по всему объему раствора вместе с молекулами воды благодаря тепловому движению. Это явление называется диффузией . Диффузия происходит медленно, поэтому около поверхности кристаллов находится избыток уже оторванных от кристалла, но еще не диффундировавших в раствор молекул сахара.

Они мешают новым молекулам воды подойти к поверхности кристалла, чтобы связаться с его молекулами водородными связями. Если раствор перемешивать, то диффузия происходит интенсивнее и растворение сахара идет быстрее. Молекулы сахара распределяются равномерно и раствор становится одинаково сладким по всему объему.

Количество молекул, способных перейти в раствор, часто ограничено. Молекулы вещества не только покидают кристалл, но и вновь присоединяются к кристаллу из раствора. Пока кристаллов относительно немного, больше молекул переходит в раствор, чем возвращается из него – идет растворение. Но если растворитель находится в контакте с большим количеством кристаллов, то число уходящих и возвращающихся молекул становится одинаковым и для внешнего наблюдателя растворение прекращается.

Ненасыщенные, насыщенные и перенасыщенные растворы

Если молекулярные или ионные частицы, распределённые в жидком растворе присутствуют в нём в таком количестве, что при данных условиях не происходит дальнейшего растворения вещества, раствор называется насыщенным. (Например, если поместить 50 гNaCl в 100 г H 2 O, то при 20ºC растворится только 36 г соли).

Насыщенным называется раствор, который находится в динамическом равновесии с избытком растворённого вещества.

Поместив в 100 г воды при 20ºC меньше 36 г NaCl мы получим ненасыщенный раствор .

При нагревании смеси соли с водой до 100C произойдёт растворение 39,8 г NaCl в 100 г воды. Если теперь удалить из раствора нерастворившуюся соль, а раствор осторожно охладить до 20ºC, избыточное количество соли не всегда выпадает в осадок. В этом случае мы имеем дело с перенасыщенным раствором . Перенасыщенные растворы очень неустойчивы. Помешивание, встряхивание, добавление крупинок соли может вызвать кристаллизацию избытка соли и переход в насыщенное устойчивое состояние.

Ненасыщенный раствор - раствор, содержащий меньше вещества, чем в насыщенном.

Перенасыщенный раствор - раствор, содержащий больше вещества, чем в насыщенном.

Растворение как физико-химический процесс

Растворы образуются при взаимодействии растворителя и растворённого вещества. Процесс взаимодействия растворителя и растворённого вещества называется сольватацией (если растворителем является вода - гидратацией ).

Растворение протекает с образованием различных по форме и прочности продуктов - гидратов. При этом участвуют силы как физической, так и химической природы. Процесс растворения вследствие такого рода взаимодействий компонентов сопровождается различными тепловыми явлениями.

Энергетической характеристикой растворения является теплота образования раствора , рассматриваемая как алгебраическая сумма тепловых эффектов всех эндо- и экзотермических стадий процесса. Наиболее значительными среди них являются:

поглощающие тепло процессы - разрушение кристаллической решётки, разрывы химических связей в молекулах;

выделяющие тепло процессы - образование продуктов взаимодействия растворённого вещества с растворителем (гидраты) и др.

Если энергия разрушения кристаллической решетки меньше энергии гидратации растворённого вещества, то растворение идёт с выделением теплоты (наблюдается разогревание). Так, растворение NaOH – экзотермический процесс: на разрушение кристаллической решётки тратится 884 кДж/моль, а при образовании гидратированных ионов Na + и OH - выделяется соответственно 422 и 510кДж/моль.

Если энергия кристаллической решётки больше энергии гидратации, то растворение протекает с поглощением теплоты (при приготовлении водного раствора NH 4 NO 3 наблюдается понижение температуры).

Растворимость

Мы говорим: "сахар растворяется в воде хорошо" или "мел плохо растворяется в воде". Но можно и количественно оценить способность того или иного вещества к растворению или, другими словами, растворимость вещества.

Растворимостью – называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества при данных условиях является его содержание в насыщенном растворе.

Если в 100 г воды растворяется более 10 г вещества, то такое вещество называют хорошо растворимым . Если растворяется менее 1 г вещества – вещество малорастворимо . Наконец, вещество считают практически нерастворимым , если в раствор переходит менее 0,01 г вещества. Абсолютно нерастворимых веществ не бывает.

Растворимость, выраженная при помощи массы вещества, которое может раствориться в 100 г воды при данной температуре, называют также коэффициентом растворимости.

В качестве примера приведем растворимость (в граммах вещества на 100 г воды при комнатной температуре) нескольких веществ: твердых, жидких и газообразных, среди которых многие имеют похожие химические формулы (таблица 7-2).

Таблица 7- 2. Растворимость некоторых веществ в воде при комнатной температуре, растворимость большинства (но не всех!) твердых веществ с увеличением температуры увеличивается, а растворимость газов, наоборот, уменьшается. Это связано прежде всего с тем, что молекулы газов при тепловом движении способны покидать раствор гораздо легче, чем молекулы твердых веществ.

**Если измерять растворимость веществ при разных температурах, то обнаружится, что одни вещества заметно меняют свою растворимость в зависимости от температуры, другие – не очень сильно (см. табл. 7-3).

Если полученные в опытах значения нанести на оси координат, то получаются так называемые кривые растворимости различных веществ (рис. 7-3). Эти кривые имеют практическое значение. По ним легко узнать, сколько вещества (например, KNO 3) выпадет в осадок при охлаждении до 20 С насыщенного раствора, приготовленного при 80 С.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План

Введение

1. Дисперсные системы. Истинные растворы

2. Растворимость твёрдых веществ и жидкостей в жидкостях. Влияние природы веществ и температуры на растворимость

3. Способы выражения концентрации растворов: массовая - С%, молярная - С м и нормальная (эквивалентная) - С н

4. Растворы электролитов. Электролитическая диссоциация кислот, оснований, солей. Ступенчатая диссоциация

5. Классификация электролитов. Степень диссоциации. Сильные и слабые электролиты

6. Реакции обмена в растворах электролитов и условия их протекания. Ионные уравнения

7. Ионное произведение воды. Водородный показатель рН растворов. Индикаторы

Заключение

Список использованных источников

Введение

Растворами называются гомогенные системы, содержащие не менее двух веществ. Могут существовать растворы твердых, жидких и газообразных веществ в жидких растворителях, а также однородные смеси (растворы) твердых, жидких и газообразных веществ. Как правило, вещество, взятое в избытке и в том же агрегатном состоянии, что и сам раствор, принято считать растворителем, а компонент, взятый в недостатке - растворенным веществом. В зависимости от агрегатного состояния растворителя различают газообразные, жидкие и твердые растворы. Газообразными растворами являются воздух и другие смеси газов. К жидким растворам относят гомогенные смеси газов, жидкостей и твердых тел с жидкостями. Твердыми растворами являются многие сплавы, например, металлов друг с другом, стёкла. Наибольшее значение имеют жидкие смеси, в которых растворителем является жидкость. Наиболее распространенным растворителем из неорганических веществ, конечно же, является вода. Из органических веществ в качестве растворителей используют метанол, этанол, диэтиловый эфир, ацетон, бензол, четыреххлористый углерод и др. В процессе растворения частицы (ионы или молекулы) растворяемого вещества под действием хаотически движущихся частиц растворителя переходят в раствор, образуя в результате беспорядочного движения частиц качественно новую однородную систему. Способность к образованию растворов выражена у разных веществ в различной степени. Одни вещества способны смешиваться друг с другом в любых количествах (вода и спирт), другие - в ограниченных (хлорид натрия и вода). Сущность процесса образования раствора можно показать на примере растворения твердого вещества в жидкости. С точки зрения молекулярно-кинетической теории растворение протекает следующим образом: при внесении в растворитель какого-либо твердого вещества, например, поваренной соли, частицы ионов Na+ и Cl-, находящиеся на поверхности, в результате колебательного движения, увеличивающегося при соударении с частицами растворителя, могут отрываться и переходить в растворитель. Этот процесс распространяется на следующие слои частиц, которые обнажаются в кристалле после удаления поверхностного слоя. Так постепенно частицы, образующие кристалл (ионы или молекулы), переходят в раствор. На рис дана наглядная схема разрушения ионной кристаллической решетки NaСl при раство­рении в воде, состоящей из полярных молекул. Частицы, перешедшие в раствор, вследствие диффузии распределяются по всему объему растворителя. С другой стороны, по мере увеличения концентрации частицы (ионы, молекулы), находящиеся в непрерывном движении, при столкновении с твердой поверхностью еще не растворившегося вещества могут задерживаться на ней, т.е. растворение всегда сопровождается обратным явлением - кристаллизацией. Может наступить такой момент, когда одновременно выделяется из раствора столько же частиц (ионов, молекул), сколько их переходит в раствор - наступает равновесие. По соотношению преобладания числа частиц, переходящих в раствор или удаляющихся из раствора, различают растворы насыщенные, ненасыщенные и пересыщенные. По относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные. Раствор, в котором данное вещество при данной температуре больше не растворяется, т.е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным, а раствор, в котором еще можно растворить добавочное количество данного вещества, - ненасыщенным. Насыщенный раствор содержит максимально возможное (для данных условий) количество растворенного вещества. Следовательно, насыщенным раствором является такой раствор, который находится в равновесии с избытком растворенного вещества. Концентрация насыщенного раствора (растворимость) для данного вещества при строго определенных условиях (температура, растворитель) - величина постоянная. Раствор, содержащий растворенного вещества больше, чем его должно быть в данных условиях в насыщенном растворе, называется пересыщенным. Пересыщенные растворы представляют собой неустойчивые, неравновесные системы, в которых наблюдается самопроизвольный переход в равновесное состояние. При этом выделяется избыток растворенного вещества, и раствор становится насыщенным. Насыщенный и ненасыщенный растворы нельзя путать с разбавленным и концентрированным. Разбавленные растворы - растворы с небольшим содержанием растворенного вещества; концентрированные растворы - растворы с большим содержанием растворенного вещества. Необходимо подчеркнуть, что понятие разбавленный и концентрированный растворы являются относительными, выражающими только соотношение количеств растворенного вещества и растворителя в растворе. Сравнивая растворимость различных веществ, мы видим, что насыщенные растворы малорастворимых веществ являются разбавленными, а хорошо растворимых веществ - хотя и ненасыщенные, но довольно концентрированными. В зависимости от того, электронейтральными или заряженными частицами являются компоненты раствора, их подразделяют на молекулярные (растворы не электролитов) и ионные (растворы электролитов). Одна из характерных особенностей растворов электролитов заключается в том, что они проводят электрический ток.

1. Дисперсные системы. Истинные растворы

Кристаллы любого вещества, например сахара или хлорида натрия, можно получить разного размера - крупные и мелкие. Каков бы ни был размер кристаллов, все они имеют одинаковую для данного вещества внутреннюю структуру - молекулярную или ионную кристаллическую решетку.

При растворении в воде кристаллов сахара и хлорида натрия образуются соответственно молекулярные и ионные растворы. Таким образом, одно и то же вещество может находиться в различной степени раздробленности: макроскопически видимые частицы (>0,2 мм, разрешающая способность глаза), микроскопически видимые частицы (от 0,2-0,1мм до 400-300нм, разрешающая способность микроскопа при освещении белым светом) и в молекулярном (или ионном) состоянии.

Если толщина плёнок, поперечник волокон или частиц (корпускул) меньше разрешающей способности оптического микроскопа то они не могут быть обнаружены с его помощью. Такие невидимые в оптический микроскоп частицы называют коллоидными, а раздробленное (диспергированное) состояние веществ с размером частиц от 400-300нм до 1нм - коллоидным состоянием вещества.

Дисперсные (раздробленные) системы являются гетерогенными. Они состоят из сплошной непрерывной фазы - дисперсионной среды и находящихся в этой среде раздробленных частиц того или иного размера и формы - дисперсной фазы.

Поскольку дисперсная (прерывная) фаза находится в виде отдельных небольших частиц, то дисперсные системы, в отличие от гетерогенных со сплошными фазами, называют микрогетерогенными, а коллоидно-дисперсные системы называют также ультра микро гетерогенными, чтобы подчеркнуть, что в этих системах граница раздела фаз не может быть обнаружена в световом микроскопе.

Когда вещество находится в окружающей среде в виде молекул или ионов, то такие растворы называют истинными, т.е. гомогенными однофазными растворами.

Обязательным условием получения дисперсных систем является взаимная нерастворимость диспергируемого вещества и дисперсионной среды. Например, нельзя получить коллоидные растворы сахара или хлорида натрия в воде, но они могут быть получены в керосине или в бензоле, в которых эти вещества практически нерастворимы.

Дисперсные системы классифицируют по дисперсности, агрегатному состоянию дисперсной фазы и дисперсионной среды, интенсивности взаимодействия между ними, отсутствию или образованию структур в дисперсных системах.

Количественной характеристикой дисперсности вещества является степень дисперсности (D) - величина, обратная размеру (а) дисперсных частиц.

Здесь а равно либо диаметру сферических или волокнистых частиц, либо длине ребра кубических частиц, либо толщине плёнок.

Степень дисперсности численно равна числу частиц, которые можно плотно уложить в ряд (или стопку плёнок) на протяжении одного сантиметра.

Если все частицы дисперсной фазы имеют одинаковые размеры, то такие системы называют монодисперсными. Частицы дисперсной фазы неодинакового размера образуют полидисперсные системы.

С повышением дисперсности всё большее число атомов вещества находится в поверхностном слое, на границе раздела фаз, по сравнению с их числом внутри объёма частиц дисперсной фазы. Соотношение между поверхностью и объёмом характеризует удельная поверхность:

которая для частиц сферической формы равна а для частиц кубической формы где r - радиус шара; d - его диаметр; l - длина ребра куба.

Следовательно, с повышением дисперсности вещества всё большее значение имеют его свойства, определяемые поверхностными явлениями, т.е. совокупностью процессов, происходящих в межфазовой поверхности. Таким образом, своеобразие дисперсных систем определяется большой удельной поверхностью дисперсной фазы и физико-химическим воздействием дисперсной среды на границе раздела фаз.

Многообразие дисперсных систем обусловлено тем, что образующие их фазы могут находиться в любом из трёх агрегатных состояний (Ж, Г, Т).

Дисперсные системы с газообразной дисперсной средой называют аэрозолями. Туманы представляют собой аэрозоли с жидкой дисперсной фазой, а пыль и дым - аэрозоли с твёрдой дисперсной фазой; пыль образуется при диспергировании веществ, а дым - при конденсации летучих веществ.

Пены - это дисперсия газа в жидкости, причем в пенах жидкость вырождается до тонких плёнок, разделяющих, разделяющих отдельные пузырьки газа. Эмульсиями называют дисперсные системы, в которых одна жидкость раздроблена в другой, не растворяющей её жидкость. Низкодисперсные системы твёрдых частиц в жидкостях, называют суспензиями, или взвесями, а предельно-высокодисперсные - коллоидными растворами, или золями, часто лизолями, чтобы подчеркнуть, что дисперсной средой является жидкость. Если дисперсной средой является вода, то такие золи называют гидрозолями, а если органическая жидкость - органозолями.

Дисперсные системы могут быть свободнодисперсными и связнодисперсными в зависимости от отсутствия или наличия взаимодействия между частицами дисперсной фазы. К свободнодисперсным системам относятся аэрозоли, лиозоли, разбавленные суспензии и эмульсии. Они текучи. В этих системах частицы дисперсной фазы не имеют контактов, участвуют в беспорядочном тепловом движении, свободно перемещаются под действием силы тяжести. Связнодисперсные системы - твердообразны, они возникают при контакте частиц дисперсной фазы, приводящим к образованию структуры в виде каркаса или сетки. Такая структура ограничивает текучесть дисперсной системы и придаёт ей способность сохранять форму. Подобные структурированные коллоидные системы называют гелями. Переход золя в гель, происходящий в результате понижения устойчивости золя, называют гелеобразованием (или желатинированием). Сильно вытянутая и плёночно-листочковая форма дисперсных частиц повышает вероятность контакта между ними и благоприятствует образованию гелей при малой концентрации дисперсной фазы. Порошки, концентрированные эмульсии и суспензии (пасты), пены - примеры связнодисперсных систем. Почва, образовавшаяся в результате контакта и уплотнения дисперсных частиц почвенных минералов и гумусовых (органических) веществ, также представляет собой связнодисперсную систему.

Сплошную массу вещества могут пронизывать поры и капилляры, образующие капиллярно-дисперсные системы. К ним относятся, например, дерево, разнообразные мембраны и диафрагмы, кожа, бумага, картон, ткани.

2. Растворимость твёрдых веществ и жидкостей в жидкостях. Влияние природы веществ и температуры на растворимость

Раствором называется твёрдая или жидкая гомогенная система, состоящая из двух или более компонентов, относительные количества которых могут изменяться в широких пределах.

Всякий раствор состоит из растворённых веществ и растворителя, т.е. среды, в которой эти вещества равномерно распределены в виде молекул или ионов. Обычно растворителем считают тот компонент, который в чистом виде существует в таком же агрегатном состоянии, что и полученный раствор. Если же оба компонента до растворения находились в одинаковом агрегатном состоянии, то растворителем считается компонент, находящийся в большем количестве.

Однородность растворов делает их очень сходными с химическими соединениями. Выделение теплоты при растворении некоторых веществ тоже указывает на химическое взаимодействие между растворителем и растворяемым веществом. Отличие растворов от химических соединений состоит в том что, состав раствора может изменяться в широких пределах. Кроме того, в свойствах раствора можно обнаружить многие свойства его отдельных компонентов, чего не наблюдается в случае химического соединения. Непостоянство состава растворов приближает их к механическим смесям, но от последних, они резко отличаются своею однородностью. Таким образом, растворы занимают промежуточное положение между механическими смесями и химическими соединениями.

Растворимостью называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества при данных условиях служит содержание его в насыщенном растворе. Поэтому численно растворимость может быть выражена теми же способами, что и состав, например, процентным отношением массы растворённого вещества к массе насыщенного раствора или количеством растворённого вещества, содержащимся в 1 л насыщенного раствора. Часто растворимость выражают также числом единиц массы безводного вещества, насыщающего при данных условиях 100 единиц массы растворителя; иногда выраженную этим способом растворимость называют коэффициентом растворимости.

Растворимость различных веществ в воде изменяется в широких пределах. Если в 100 г воды растворяется более 10 г вещества, то такое вещество принято называть хорошо растворимым; если растворяется менее 1 г вещества - малорастворимым и, наконец, практически нерастворимыми, если в раствор переходит менее 0,01 г вещества.

Принципы, позволяющие предсказать растворимость вещества, пока не известны. Однако обычно вещества, состоящие из полярных молекул, и вещества с ионным типом связи лучше растворяются в полярных растворителях (вода, спирты, жидкий аммиак), а неполярные вещества - неполярных растворителях (бензол, сероуглерод).

Растворение большинства твёрдых тел сопровождается поглощением теплоты. Это объясняется затратой значительного количества энергии на разрушение кристаллической решётки твёрдого тела, что обычно не полностью компенсируется энергией, выделяющейся при образовании гидратов (сольватов). Прилагая принцип Ле Шателье к равновесию между веществом в кристаллическом состоянии и его насыщенным раствором

Кристалл + Растворитель Насыщенный раствор ± Q

приходим к выводу, что в тех случаях, когда вещество растворяется с поглощением энергии, повышение температуры должно приводить к увеличению его растворимости. Если же, однако, энергия гидратации достаточно велика, чтобы образование раствора сопровождалось выделением энергии, растворимость с ростом температуры понижается. Это происходит, например, при растворении в воде многих солей лития, магния, алюминия.

При растворении твёрдых тел в воде объём системы обычно изменяется незначительно. Поэтому растворимость веществ, находящихся в твёрдом состоянии, практически не зависит от давления.

Жидкости также могут растворяться в жидкостях. Некоторые из них неограниченно растворимы одна в другой, т.е. смешиваются друг с другом в любых пропорциях, как, например, спирт и вода, другие - взаимно растворяются лишь до известного предела. Так если взболтать диэтиловый эфир с водой, то образуется два слоя: верхний представляет собой насыщенный раствор воды в эфире, а нижний - насыщенный раствор эфира в воде. В большинстве подобных случаев с повышением температуры взаимная растворимость жидкостей увеличивается до тех пор, пока не будет достигнута температура, при которой обе жидкости смешиваются любых пропорциях.

Температура, при которой ограниченная взаимная растворимость жидкостей переходит в неограниченную, называется критической температурой растворения. агрегатный молекулярный гетерогенный

Как и в случае растворения твёрдых тел, взаимное растворение жидкостей обычно не сопровождается значительным изменением объёма. Поэтому взаимная растворимость жидкостей мало зависит от давления и заметно возрастает лишь при очень высоких давлениях (порядка тысяч атмосфер).

Если в систему, состоящую из двух несмешивающихся жидкостей, ввести третье вещество, способное растворяться в каждой из этих жидкостей, то растворённое вещество будет распределяться между обеими жидкостями пропорционально своей растворимости в каждой из них. Отсюда вытекает закон распределения, согласно которому вещество, способное растворяться в двух несмешивающихся растворителях, распределяется между ними так, что отношение его концентраций в этих растворителях при постоянной температуре остаётся постоянным, независимо от общего количества растворённого вещества:

Здесь С 1 и С 2 - концентрации растворённого вещества в первом и втором растворителях; К - так называемый коэффициент распределения.

3. Способы выражения концентрации раствор ов: массовая - С%, молярная - С м и нормальная (эквивалентная) - С н

Массовая доля - отношение (обычно - процентное) массы растворённого вещества к массе раствора. Например, 15% (масс.) водный раствор хлорида натрия - это такой раствор в 100 единицах массы которого содержится 15 единиц массы NaCl и 85 единиц массы воды.

Молярная концентрация, или молярность - отношение количества растворённого вещества к объёму раствора. Обычно молярность обозначается С М или (после численного значения молярности) М. Так, 2МH 2 SO 4 означает раствор, в каждом литре которого содержится 2 моля серной кислоты, т.е. С М =2моль/л.

Эквивалентная, или нормальная концентрация - отношение числа эквивалентов растворённого вещества к объёму раствора. Концентрация, выраженная этим способом, обозначается СН или (после численного значения нормальности) буквой н. Так 2 н H 2 SO 4 означает раствор, в каждом литре которого содержится 2 эквивалента серной кислоты, т.е. СН (1/2H 2 SO 4) =2моль/л.

4. Растворы электролитов. Электролитическая диссоциация кислот, оснований, солей. Ступенчатая диссоциация

Водные растворы солей, кислот и оснований обладают особенностью - они проводят электрический ток. При этом большинство твёрдых солей и оснований в безводном состоянии, а также безводные кислоты обладают очень слабой электрической проводимостью: плохо проводит электрический ток и вода. Очевидно, что при образовании растворов подобные вещества претерпевают какие-то изменения, обуславливающие возникновение высокой электрической проводимости. Эти изменения заключаются в диссоциации соответствующих веществ на ионы, которые и служат переносчиками электрического тока.

Вещества, проводящие электрический ток своими ионами, называются электролитами. При растворении в воде и в ряде неводных растворителей свойства электролитов проявляют соли, кислоты и основания. Электролитами являются также многие расплавленные соли, оксиды и гидроксиды, некоторые соли и оксиды в твёрдом состоянии.

Кислоты

При диссоциации любой кислоты образуются ионы водорода. Поэтому все свойства, которые являются общими для водных растворов кислот, объясняются присутствием гидратированных ионов водорода. Это они вызывают красный цвет лакмуса, сообщают кислотам кислый вкус и т.д. С устранением ионов водорода, например при нейтрализации, исчезают и кислотные свойства. Поэтому теория электролитической диссоциации определяет кислоты как электролиты, диссоциирующие в растворах с образованием ионов водорода. У сильных кислот, диссоциирующих нацело, свойства кислот проявляются в большей степени, у слабых в меньшей. Чем лучше кислота диссоциирует, тем она сильнее.

Основания

Поскольку общим для всех растворов оснований является присутствие в них гидроксид-ионов, то ясно, что носителем основных свойств является гидроксид-ион. Поэтому с точки зрения теории электролитической диссоциации основания - это электролиты, диссоциирующие в растворах с отщеплением гидроксид-ионов.

Сила оснований, как и сила кислот, зависит от величины константы диссоциации. Чем больше константа диссоциации данного основания, тем оно сильнее.

Соли

Соли можно определить как электролиты, которые при растворении в воде диссоциируют, отщепляя положительные ионы, отличные от ионов водорода, и отрицательные ионы, отличные от гидроксид-ионов. Таких ионов, которые были бы общими для водных растворов всех солей, нет; поэтому соли и не обладают общими свойствами. Как правило, соли хорошо диссоциируют, и тем лучше, чем меньше заряды ионов, образующих соль.

При растворении кислых солей в растворе образуются катионы металла, сложные анионы кислотного остатка, а также ионы, являющиеся продуктами диссоциации этого сложного кислотного остатка, в том числе ионы Н + .

При диссоциации основных солей образуются анионы кислоты и сложные катионы, состоящие из металла и гидроксогрупп. Эти сложные катионы также способны к диссоциации. Поэтому в растворе основной соли присутствуют ионы ОН - .

К равновесию, которое устанавливается в растворе слабого электролита между молекулами и ионами, можно применить законы химического равновесия. Константа равновесия, отвечающая диссоциации слабого электролита, называется константой диссоциации. Величина К зависит от природы электролита и растворителя, а также от температуры, но не зависит от С раствора. Она характеризует способность данной кислоты или данного основания распадаться на ионы: чем выше К, тем легче электролит диссоциирует.

Многоосновные кислоты, а также основания двух- и более валентных металлов диссоциируют ступенчато. В растворах этих веществ устанавливаются сложные равновесия, в которых участвуют ионы различного заряда.

Первое равновесие - диссоциация по первой ступени - характеризуется константой диссоциации, обозначаемой К 1, а второе - диссоциация по второй ступени - константой диссоциации К 2 . Величины К, К 1 и К 2 связаны друг с другом соотношением

При ступенчатой диссоциации веществ распад по последующей ступени всегда происходит в меньшей степени, чем по предыдущей. Соблюдается неравенство:

К 1 >К 2 >К 3 …

Это объясняется тем, что энергия, которую нужно затратить для отрыва иона, минимальна при отрыве его от нейтральной молекулы и становится больше при диссоциации по каждой следующей ступени.

5. Классификация электролитов. Степень диссоциации. Сильные и слабые электролиты

Если бы электролиты полностью диссоциировали на ионы, то осмотическое давление (и другие пропорциональные ему величины) всегда было бы в целое число раз больше значений, наблюдаемых в растворах неэлектролитов. Но ещё Вант-Гофф установил, что коэффициент i выражается дробными числами, которые с разбавлением раствора возрастают, приближаясь к целым числам.

Аррениус объяснил этот факт тем, что лишь часть электролита диссоциирует в растворе на ионы, и ввёл понятие степени диссоциации. Степенью диссоциации электролита называется отношение числа его молекул, распавшихся в данном растворе на ионы, к общему числу его молекул в растворе.

Позже было установлено, что электролиты можно разделить на две группы: сильные и слабые электролиты. Сильные электролиты в водных растворах диссоциированны практически нацело. Понятие степени диссоциации к ним по существу неприменимо, а отклонение изотонического коэффициента i от целочисленных значений объясняется другими причинами. Слабые электролиты в водных растворах диссоциируют только частично. Поэтому число ионов в растворах сильных электролитов больше, чем в растворах слабых той же концентрации. И если в растворах слабых электролитов С ионов мала, расстояние между ними велики и взаимодействие ионов друг с другом незначительно, то в не очень разбавленных растворах сильных электролитов среднее расстояние между ионами вследствие значительной концентрации сравнительно мало. В таких растворах ионы не вполне свободны, движение их стеснено взаимным притяжением друг к другу. Благодаря этому притяжению каждый ион как бы окружен шарообразным роем противоположно заряженных ионов, получившим название "ионной атмосферы".

К сильным электролитам принадлежат все соли; из важнейших кислот и оснований к ним относятся HNO 3 , H 2 SO 4 , HClO 4 , HCl, HBr, HI, KOH, NaOH, Ba(OH) 2 , и Ca(OH) 2 .

К слабым электролитам относятся большинство органических кислот, а из важнейших неорганических соединений к ним принадлежат H 2 CO 3 , H 2 S, HCN, H 2 SiO 3 и NH 4 OH.

Степень диссоциации принято обозначать греческой буквой a и выражать либо в долях единицы, либо в процентах.

6. Реакции обмена в растворах электролитов и условия их протекания. Ионные уравнения

При нейтрализации любой сильной кислоты любым сильным основанием на каждый моль образующейся воды выделяется около 57,6 кДж теплоты. Это говорит о том, что подобные реакции сводятся к одному процессу. Если перепишем уравнение, записывая сильные электролиты в ионной форме, поскольку они существуют в растворе в виде ионов, а слабые - в молекулярной, поскольку они находятся в растворе преимущественно в виде молекул.

Рассматривая получившееся уравнение, видим, что в ходе реакции ионы Na + и Cl - не претерпели изменений. Поэтому перепишем уравнение ещё раз, исключив эти ионы из обеих частей уравнения. Получим:

Таким образом, реакции нейтрализации любой сильной кислоты любым сильным основанием сводится к одному и тому же процессу - к образованию молекул воды из ионов водорода и гидроксид-ионов. Ясно, что тепловые эффекты этих реакций тоже должны быть одинаковы.

Строго говоря, реакция образования воды из ионов обратима, что можно выразить уравнением:

Вода - очень слабый электролит и диссоциирует лишь в ничтожно малой степени. Равновесие между молекулами воды и ионами сильно смещено в сторону образования молекул. Поэтому практически реакция нейтрализации сильной кислоты сильным основанием протекает до конца

При смешивании раствора какой-либо соли серебра с соляной кислотой или с раствором любой её соли всегда образуется характерный белый творожистый осадок хлорида серебра:

Подобные реакции также сводятся к одному процессу. Для того чтобы получить его ионно-молекулярное уравнение, перепишем уравнение первой реакции, записывая сильные электролиты в ионной форме а вещество, находящееся в осадке, в молекулярной:

Как видно, ионы Н + и NО 3 - не претерпевают изменений в ходе реакции. Поэтому исключим их и перепишем уравнение ещё раз:

Это и есть ионно-молекулярное уравнение рассматриваемого процесса.

Здесь также надо иметь в виду, что осадок хлорида серебра находится в равновесии с ионами Ag + и Cl - в растворе, так что процесс, выраженный последним уравнением обратим:

Однако, вследствие малой растворимости хлорида серебра, это равновесие очень сильно смещено вправо. Поэтому можно считать, что реакция образования AgCl из ионов практически доходит до конца.

Для составления ионно-молекулярных уравнений необходимо знать, какие соли растворимы в воде и какие практически нерастворимы.

Ионно-молекулярные уравнения помогают понять особенности протекания реакций между электролитами.

7. Ионное произведение воды. Водородный показатель рН растворов. Индикаторы

Чистая вода очень плохо проводит электрический ток, но всё же обладает измеримой электрической проводимостью, которая объясняется небольшой диссоциацией воды на ионы водорода и гидроксид-ионы. Для воды и разбавленных водных растворов при неизменной температуре произведение концентраций ионов водорода и гидросид-ионов есть величина постоянная. Эта постоянная величина называется ионным произведением воды. Растворы, в которых концентрация ионов водорода и гидроксид-ионов одинаковы, называются нейтральными растворами.

Если концентрация ионов водорода в водном растворе известна, то тем самым определена и концентрация гидроксид-ионов. Поэтому как степень кислотности, так и степень щёлочности раствора можно количественно охарактеризовать концентрацией ионов водорода. Кислотность и щелочность раствора можно выразить другим, более удобным способом: вместо концентрации ионов водорода указывают её десятичный логарифм, взятый с обратным знаком. Эта величина называется водородным показателем и обозначается через рН:

Для измерения рН существуют различные методы. Приближённо реакцию раствора можно определить с помощью специальных реактивов, называемых индикаторами, окраска которых меняется в зависимости от концентрации ионов водорода. Наиболее распространённый индикатор - метиловый оранжевый, метиловый красный, фенолфтолеин.

Заключение

Растворами называются гомогенные системы переменного состава, в которых растворенное вещество находится в виде атомов, ионов или молекул, равномерно окруженных атомами, ионами или молекулами растворителя. Любой раствор состоит по меньшей мере из двух веществ, одно из которых считается растворителем, а другое - растворенным веществом. Растворителем считается компонент, агрегатное состояние которого такое же, как и агрегатное состояние раствора. Деление это довольно условно, а для веществ, смешивающихся в любых соотношениях (вода и ацетон, золото и серебро), лишено смысла. В этом случае растворителем считается компонент, находящийся в растворе в большем количестве.

Состав растворов может меняться в довольно широких пределах, в этом растворы сходны с механическими смесями. По другим признакам, таким как однородность, наличие теплового эффекта и окраски растворы сходны с химическими соединениями. Растворы могут существовать в газообразном, жидком или твердом агрегатном состоянии. Воздух, например, можно рассматривать как раствор кислорода и других газов в азоте; морская вода - это водный раствор различных солей в воде. Металлические сплавы относятся к твердым растворам одних металлов в других. Растворение веществ является следствием взаимодействия частиц растворяемого вещества и растворителя. В начальный момент времени растворение идет с большой скоростью, однако по мере увеличения количества растворенного вещества возрастает скорость обратного процесса - кристаллизации. Кристаллизацией называется выделение вещества из раствора и его осаждение. В какой-то момент скорости растворения и осаждения сравняются, и наступит состояние динамического равновесия. Раствор, в котором вещество при данной температуре уже больше не растворяется, или иначе, раствор, находящийся в равновесии с растворяемым веществом, называется насыщенным. Для большинства твердых веществ растворимость в воде увеличивается с повышением температуры. Если раствор, насыщенный при нагревании, осторожно охладить так, чтобы не выделялись кристаллы, то образуется пересыщенный раствор. Пересыщенным называется раствор, в котором при данной температуре содержится большее количество растворенного вещества, чем в насыщенном растворе. Пересыщенный раствор крайне нестабилен и при изменении условий (энергичное встряхивание или внесение активных центров кристаллизации - кристалликов соли, пылинок) образуется насыщенный раствор и кристаллы соли. Раствор, содержащий меньше растворенного вещества, чем насыщенный, называется ненасыщенным раствором.

Литература

1. Глинка Н.Л. Общая химия: - Л.: Химия 1985.-704с. Под ред. В.А. Рабиновича.

2. Фролов В.В. Химия: - М.: Высш. Шк., 1986.- 543с.

3. Киреев В.А. "Курс физической химии",М. 1975

4.Глинка. Н.Л. "Общая химия", М. 2000

5. Дей М.К., Д. Селбин "Теоретическая неорганическая химия", М. 1971

6. Николаев Л.А. "Общая и неорганическая химия" М. 1974

7. Краснов К.С. "Физическая химия" М. 2001

Размещено на Allbest.ru

...

Подобные документы

    Природа растворяемого вещества и растворителя. Способы выражения концентрации растворов. Влияние температуры на растворимость газов, жидкостей и твердых веществ. Факторы, влияющие на расторимость. Связь нормальности и молярности. Законы для растворов.

    лекция , добавлен 22.04.2013

    Растворимость газов и твердых тел в жидкостях. Коллигативные свойства разбавленных растворов неэлектролитов и в случае диссоциации. Понятие осмотического давления. Совершенные и реальные растворы: характеристика и уравнения. Закон распределения.

    лекция , добавлен 28.02.2009

    Физические свойства воды, дипольный момент молекулы. Механизм образования растворов. Влияние давления, температуры и электролитов на растворимость веществ. Тепловая теорема Нернста. Главные способы выражения состава растворов. Понятие о мольной доле.

    реферат , добавлен 23.03.2013

    Определение растворов, их виды в зависимости от агрегатного состояния растворителя, по величине частиц растворенного вещества. Способы выражения концентрации. Факторы, влияющие на растворимость. Механизм растворения. Закон Рауля и следствие из него.

    презентация , добавлен 11.08.2013

    Константы и параметры, определяющие качественное (фазовое) состояние, количественные характеристики растворов. Виды растворов и их специфические свойства. Способы получения твердых растворов. Особенности растворов с эвтектикой. Растворы газов в жидкостях.

    реферат , добавлен 06.09.2013

    Раствор как гомогенная система, состоящая из двух или более компонентов, имеющих молекулярную, ионную или атомную степень раздробленности, его виды. Массовая и молярная доля. Примеры вычисления концентрации раствора. Растворимость твердых веществ в воде.

    презентация , добавлен 01.05.2014

    Классификация и особенности растворов и растворителей. Участие растворителей в кислотно-основном взаимодействии и их результаты. Протеолитическая теория кислот и оснований. Способы выражения концентрации растворов. Буферные растворы и вычисление их pH.

    реферат , добавлен 23.01.2009

    Растворы как твердые или жидкие гомогенные системы переменного состава, состоящие из двух или более компонентов, их классификация и типы, способы выражения концентрации. Термодинамика процессов растворения. Коллигативные свойства растворов электролитов.

    контрольная работа , добавлен 19.02.2011

    Понятие твёрдых растворов, типы их растворимости. Равновесие раствор-кристалл. Кривая кристаллизации. Смешанные кристаллы и соединения. Расчет и построение линии солидуса для системы GaAs-Sn с использованием основных законов и уравнений термодинамики.

    курсовая работа , добавлен 04.06.2013

    Зависимость температуры кипения водных растворов азотной кислоты от содержания HNO. Влияние состава жидкой фазы бинарной системы на температуру кипения при давлении. Влияние температуры на поверхностное натяжение водных растворов азотной кислоты.

Химические растворы находят применение в самых разных отраслях промышленности. Самые распространенные растворы, используемые в химическом производстве, это растворы кислот и щелочей. Рассмотрим же основные из них.

Бисульфит натрия NaHSO 3

Данный вид раствора имеет светло-желтый окрас. В ряде случаев может становиться коричневого оттенка. Зачастую для транспортировки и хранения бисульфита натрия используются бутылки из стекла или железнодорожные цистерны. Но в случае покупки такого вещества возможен его разлив по канистрам, бочкам и иным емкостям аналогичного типа. Период годности раствора равен 90 дням с даты изготовления.

Гидроокись калия KOH

Гидроокись калия — это кристаллы, не имеющие цвета, используемые во время производства жидкого мыла и получения различных калиевых соединений. Кроме этого, активного применения приобрело вещество при изготовлении метана и в роли электролитов в структуре батареек. Вещество такого рода способствует очищению нержавеющей стали от жирных пятен и прочего род загрязнений.

Раствор хлористого кальция CaCl 2

Хлористый кальций — это соль соляной кислоты. Ему свойственно замерзать при холодной погоде (в соотношении: 20% при -18, 30% при -48 градусах по Цельсию). Раствор хлористого кальция широко применяется на газораспределительных станциях, в строительной сфере (обеспечивает быстрое схватывание цемента), с целью противодействия гололеду, в таких отраслях промышленности как пищевая и медицинская. Для хранения и перемещения используются канистры и кубы.

Раствор едкого натрия NaOH

Раствор едкого натрия широко используется в качестве реагента во время проведения различных химических реакций. Является сильной щелочью, по этой причине довольно часто он применяется с целью нейтрализации едкой кислоты. Кроме того, в качестве составляющей входит в содержание средств для отбеливания, ДВП, бумаги, парфюмерных и косметических продуктов.

Раствор серной кислоты H 2 SO 4

Серная кислота входит в класс двухосновных сильнодействующих кислот. Имеет вид густообразной бесцветной жидкости, не имеющей запаха. В промышленной сфере зачастую применяются такие растворы на основе дистиллированной воды. Уровень концентрации самой кислоты зависит от области использования раствора. Зачастую вещество применяют при выполнении химического синтеза, для очищения сырой нефти, во время производства удобрений и средств бытовой химии.

Раствор соляной кислоты HCl

Соляная кислота представлена химическим веществом в виде бесцветной жидкости, которой присущ резкий запах. Данный вид элемента выступает в качестве очень сильного растворителя. Приобрела широкое распространение в таких областях: химическая промышленность, гальванопластика, медицины, выпуск бумажных и картонных изделий. Хранение и транспортировка вещества осуществляется в обычных канистрах или кубах.

Сульфаминовая кислота NH 2 SO 3 H

Сульфаминовая кислота представлена в виде растворимого в воде кристаллического вещества, имеющего белый либо серый оттенок. Раствор такой кислоты используется с целью очищения промышленных устройств, для придания материалам из текстиля огнезащитных характеристик. Срок годности такого вещества составляет один год.

Растворами называются гомогенные системы, содержащие не менее двух веществ. Могут существовать растворы твердых, жидких и газообразных веществ в жидких растворителях, а также однородные смеси (растворы) твердых, жидких и газообразных веществ. Как правило, вещество, взятое в избытке и в том же аг­регатном состоянии, что и сам раствор, принято считать растворителем , а компонент, взятый в недостатке — растворенным веществом ./>/>

В зависимости от агрегатного состояния />растворителя различают газообразные , жидкие и твердые растворы./>

Газообразными растворами />являются воздух и другие смеси газов.

К жидким растворам относят гомогенные смеси газов, жид­костей и твердых тел с жидкостями. />

Твердыми растворами />являются многие сплавы, например, металлов друг с другом, стёкла. Наибольшее значение имеют жидкие смеси, в которых растворителем является жидкость. Наи­более распространенным растворителем из неорганических ве­ществ, конечно же, является вода. Из органических веществ в качестве растворителей используют метанол, этанол, диэтиловый эфир, ацетон, бензол, четыреххлористый углерод и др.

В процессе растворения частицы (ионы или молекулы) рас­творяемого вещества под действием хаотически движущихся час­тиц растворителя переходят в раствор, образуя в результате бес­порядочного движения частиц качественно новую однородную систему. Способность к образованию растворов выражена у разных веществ в различной степени. Одни вещества способны смешиваться друг с другом в любых количествах (вода и спирт), другие — в ограниченных (хлорид натрия и вода). />

Сущность процесса образования раствора можно показать на />примере растворения твердого вещества в жидкости. С точки зре ния молекулярно-кинетической теории растворение протекает следующим образом: при внесении в растворитель какого-либо твердого вещества, например, поваренной соли, частицы ионов Na + и Cl , находящиеся на поверхности, в результате колебатель­ного движения, увеличивающегося при соударении с частицами растворителя, могут отрываться и переходить в растворитель. Этот процесс распространяется на следующие слои частиц, кото­рые обнажаются в кристалле после удаления поверхностного слоя. Так постепенно частицы, образующие кристалл (ионы или молекулы), переходят в раствор. На дана наглядная схема разрушения ионной кристаллической решетки Na С l при раство­рении в воде, состоящей из полярных молекул.

Частицы, перешедшие в раствор, вследствие диффузии распределяются по всему объему растворителя. С другой стороны, по мере увеличения концентрации частицы (ионы, молекулы), на­ходящиеся в непрерывном движении, при столкновении с твердой поверхностью еще не растворившегося вещества могут задерживаться на ней, т.е. растворение всегда сопровождается обратным явлением — кристаллизацией . Может наступить такой момент, когда одновременно выделяется из раствора столько же частиц (ионов, молекул), сколько их переходит в раствор — наступает равновесие. />

По соотношению преобладания числа частиц, переходящих в раствор или удаляющихся из раствора, различают растворы на­сыщенные , ненасыщенные и пересыщенные . По относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные ./>/>

Раствор, в котором данное вещество при данной температуре больше не растворяется, т.е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным , а раствор, в котором еще можно растворить добавочное количество данного вещества, — ненасыщенным .

Насыщенный раствор содержит максимально возможное (для данных условий) количество растворенного вещества. Следова­тельно, насыщенным раствором является такой раствор, который находится в равновесии с избытком растворенного вещества. Концентрация насыщенного раствора (растворимость) для данно­го вещества при строго определенных условиях (температура, растворитель) — величина постоянная./>

Раствор, содержащий растворенного вещества больше, чем его должно быть в данных условиях в насыщенном растворе, на­зывается пересыщенным . Пересыщенные растворы представляют собой неустойчивые, неравновесные системы, в которых наблю­дается самопроизвольный переход в равновесное состояние. При этом выделяется избыток растворенного вещества, и раствор ста­новится насыщенным.

Насыщенный и ненасыщенный растворы нельзя путать с разбавленным и концентрированным. Разбавленные растворы — растворы с небольшим содержанием растворен­ного вещества; концентрированные растворы — растворы с большим содержанием растворенного вещества. Необходимо подчеркнуть, что понятие разбавленный и концентрированный растворы являются относительными, выражающими только соот­ношение количеств растворенного вещества и растворителя в растворе. />

Сравнивая растворимость различных веществ, мы видим, что насыщенные растворы малорастворимых веществ являются разбавленными, а хорошо растворимых веществ — хотя и ненасы­щенные, но довольно концентрированными./>

В зависимости от то­го, электронейтральными или заряженными частицами являются компоненты раствора, их подразделяют на молекулярные (растворы неэлектролитов ) и ионные (растворы электролитов). Одна из характерных особенностей растворов электролитов за­ключается в том, что они проводят электрический ток./>